
1 Experimental Measurements of Convective Heat Flux Ahead of Fire  

1.1 Introduction 

It has long been known that fuel particles can ignite when enough radiative and convective heat is 

transferred to them [1]. Thus, experimental studies of fire propagation in simple and complex 

vegetative fuels usually focus on dynamics of the fire front and thermal measurements [2–4]. 

Radiative heat transfer has been often assumed to be the governing heat transfer mechanism in 

flame propagation[5]. However, recent findings show radiation is often not sufficient by itself [4, 

6–10]. To understand the dynamics of fire propagation in vegetative fuels, it is crucial to include 

the convective mode of heat transfer. [11, 12]. Unlike radiative heat transfer, which can be 

measured using radiative heat flux gauges, no instrument can directly measure convective heat 

transfer. Convective heat transfer can be quantitively calculated by measuring total and radiative 

heat flux using a Schmidt-Boelter sensor [10]. This methodology calculates the heat flux at the 

surface of the sensor. Hence, this method doesn’t provide information on the local velocity field, 

which governs the convective heat transfer. 

Optical methods such as Particle Image Velocimetry (PIV) have been performed to quantify the 

local velocity field and flow structure of the fire environment [13, 14]. The information provided 

by PIV is limited to the velocity field so it cannot provide a complete picture of thermal convection 

because the temperature is not measured. In more recent work, Gustenyov et al. [15] used smoke 

to visualize flow over a heated plate inside of a low-speed wind tunnel. The heated plate was used 

to simulate spreading line fire. With the development of infrared imaging, thermography 

methodologies can be used for the temperature mapping inside the fire plume [16]. The 

combination of thermography and PIV has been used to estimate the velocity and temperature 



profile within the fire plume [17]. This methodology, known as Thermal Particle Image 

Velocimetry (TPIV), used hotspots within the plume as tracing particles and computed the 

displacement of such particles to obtain the velocity field within the fire plume. Due to the low IR 

emissivity of gases TPIV measurements were limited to direct tracking of hot particles in the 

plume, but no direct measurements of convective gas motion around the fire are feasible. 

Moreover, the temperature field around the flame fluctuates as a consequence of the turbulent 

nature of the flame, [2, 18] These changes in temperature lead to density fluctuations that can be 

visualized by schlieren systems [19]. The common schlieren system, which was introduced by 

Toepler [20], needs a complex optical system using high precision lenses and mirrors. Wernekinck 

and Merzkirch [21] tried to reduce the complexity of the schlieren system by calculating and 

analyzing the displacement of laser generated speckle patterns. Background Oriented Schlieren 

(BOS), and Background Oriented Optical Tomography (BOOT) were invented almost 

simultaneously by Dalzeil [22] and Meier [23]. In the development of BOS, Meier used PIV 

approach and captured optical distortion of the PIV-like speckled background noise. The optical 

distortion produced a pseudo-PIV with the particle displacement characterizing the distortion. 

While BOS is actually synthetic background-distortion schlieren, the BOS acronym is well-

established [24]. Because of its easy and inexpensive configuration, BOS has become an important 

tool in flow visualization [25] and can be used for 2D and 3D reconstruction of the flow field. 

Various methods of BOS using different backgrounds have been developed [26–29]. The primary 

results from these various methods are visualizations of the flow field, density gradients, and 

density associated with the flow field. 

Schlieren systems and speckle noise patterns have been used for a wide variety of flow imagery 

applications in different scales , from microvascular flow [30] to flow of a supersonic aircraft [31] 



and flow visualization around a turbulent flame [32–38]. Schlieren imagery in fire plume 

applications has been usually deployed to a controlled burner flame rather than vegetative fuel 

beds.  Recently Grauer et al. [39] applied background oriented optical tomography and 

reconstructed the 3D instantaneous refractive index field of a turbulent flame. Typically, schlieren 

images have not been processed to obtain secondary data such as velocity fields and important 

parameters related to the flow structure. These studies did not investigate and visualize the hot gas 

plume behaviour when an external flow is present. 

In the present study, convective heat transfer was quantified to help understand its effects on 

pyrolysis and ignition in laboratory and small scales field fires. This measurement was part of a 

larger study that is measuring and modeling pyrolysis of common plant species located in the 

southern United States[40]. The experiments were conducted in a low-speed wind tunnel located 

at the USDA Forest Service Pacific Southwest Research Station fire laboratory in Riverside, 

CA[41, 42]. The details of the experimental setup and configuration are provided in section 1.3. 

Various technique have been used to describe flow fields around laboratory fires inside this wind 

tunnel[43–45], However, since the addition of foreign matter in the present study would have 

affected the gas sampling objective, 2D Background Oriented Schlieren system was deployed to 

visualize hot gases around a turbulent diffusive flame and help to describe the flow fields around 

the fire as it spread in a porous vegetative fuel bed.  Section 1.2 gives a brief background on the 

BOS system. This section also describes the calculation process for flow visualization and velocity 

calculation. The result and summary of BOS analysis are provided in section 1.5. Other than the 

BOS system, other instruments such as heat flux sensors and thermocouples were used in the wind 

tunnel as well. These instruments are described in the experimental design section 1.3. The results 

associated with these instruments are described in section 1.6 and 1.7.  



1.2 Background Oriented Schlieren  

The fundamental principle and governing equation for schlieren flow visualization in gases is the 

Gladstone-Dale equation.[46] 

𝑛𝑛 − 1 = 𝐾𝐾(𝜆𝜆) ∙ 𝜌𝜌, (1) 

where 𝑛𝑛 is the refractive index of the medium which is linearly proportional to the density of the 

medium 𝜌𝜌. The proportionality constant, 𝐾𝐾(𝜆𝜆), is known as the Gladstone-Dale constant and is a 

very weak function of temperature and is a function of the wavelength 𝜆𝜆 and the chemical 

composition of the medium [46]. For air, 𝐾𝐾(𝜆𝜆) is usually taken to be 0.23 ∙ 10−3(𝑚𝑚3/𝑘𝑘𝑘𝑘). Fig. 1, 

shows a simple setup of Background Oriented Schlieren configuration. 𝑍𝑍𝐷𝐷 is the distance of the 

inhomogeneous field from the background noise pattern. 𝑍𝑍𝐵𝐵 is the distance of the camera lens from 

the background. 𝜖𝜖𝑦𝑦 represent the deflection angle. 𝐿𝐿 is the depth of the inhomogeneous flow field, 

𝑓𝑓 is the focal length of the camera, Δ𝑦𝑦′ is the displacement in the camera sensor plane and Δ𝑦𝑦 is 

displacement in the background plane. 

  
Figure 1. A simple schematic of BOS configuration. 

In the configuration, such as the ones represented by Figure 1, The image of the background noise 

patterns does not get distorted when there is a homogenous density field between the pattern and 
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the camera. However, if there is a density gradient (inhomogeneous field) when light encounters 

the density gradient fields, it deflects with the deflection angle, 𝜖𝜖𝑦𝑦. The camera sensor records the 

deflection as displacement Δ𝑦𝑦′. The displacement, Δ𝑦𝑦′ can be measured by comparing the 

background image with and without the inhomogeneous field. According to schlieren theory[47, 

48], 𝜖𝜖𝑦𝑦 is a line integral of the reflective index gradient 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 along the optical axis 𝑧𝑧. For a planar 

2D BOS, the refractive gradient is assumed to be constant along the 𝑧𝑧 axis. The Schlieren equation 

can be written as 

𝜖𝜖𝑦𝑦 = 1
𝑛𝑛 ∫

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 = 𝐿𝐿

𝑛𝑛∞
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�   (2) 

where 𝐿𝐿 is the depth of the inhomogeneous medium, and 𝑛𝑛∞ is the refractive index of the ambient 

air. From figure 1  

tan�𝜖𝜖𝑦𝑦� = Δ𝑦𝑦
𝑍𝑍𝐷𝐷

= Δ𝑦𝑦′

𝑍𝑍𝐵𝐵
∙ 𝑓𝑓   (3) 

assuming that the deflection angle is small (𝜖𝜖𝑦𝑦 ≅ tan (𝜖𝜖𝑦𝑦)), equations 2 and 3 are combined to 

give: 

Δ𝑦𝑦′ = 𝑍𝑍𝐷𝐷
𝑓𝑓
𝑍𝑍𝐵𝐵

𝐿𝐿
𝑛𝑛∞
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�  (4) 

Δ𝑦𝑦 = 𝑍𝑍𝐷𝐷
𝐿𝐿
𝑛𝑛∞
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�  (5) 

Values of 𝐿𝐿,𝑛𝑛∞,𝑍𝑍𝐷𝐷 ,𝑓𝑓,𝑍𝑍𝐵𝐵 are constant and depend only on the configuration of the experimental 

setup. Applying the Gladstone-Dale principal (equation 1), to equations 4 and 5, results in  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑛𝑛∞𝑍𝑍𝐵𝐵
𝐾𝐾(𝜆𝜆)∙𝑍𝑍𝐷𝐷∙𝑓𝑓∙𝐿𝐿

Δ𝑦𝑦′ = 𝐺𝐺1 ∙ Δ𝑦𝑦′  (6) 



𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑛𝑛∞
𝐾𝐾(𝜆𝜆)∙𝑍𝑍𝐷𝐷∙𝐿𝐿

Δ𝑦𝑦 = 𝐺𝐺2 ∙ Δ𝑦𝑦  (7) 

where 𝐺𝐺1 and 𝐺𝐺2 are constants which depend on the setup configuration and the Gladstone-Dale 

constant. The simplifications introduced in equation 6 and 7 are based on the assumption the 

changes in density gradient are more significant than changes in the Gladstone-Dale constant 

(𝐾𝐾(𝜆𝜆)/𝜕𝜕𝜕𝜕 ≪ 1). 

Combining equations 6 and 7 with using the common linear variation in density with temperature 

(𝜌𝜌 = 𝜌𝜌0[1 + β(𝑇𝑇 − 𝑇𝑇0)] where 𝛽𝛽 is the thermal expansion coefficient, it can be shown that: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐶𝐶1 ∙ Δ𝑦𝑦′  (8) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐶𝐶2 ∙ Δ𝑦𝑦  (9) 

where 𝐶𝐶1 and 𝐶𝐶2 are constants which depend on the setup configuration, 𝐾𝐾(𝜆𝜆) and 𝛽𝛽.  

Since this method visualizes density gradients, it directly leads to the visualization of 

baroclinicity[49].  

1.2.1 Displacement calculations   

As shown in equation 6, the density gradient for every pixel is obtained by calculating 

displacement (Δ𝑦𝑦′) between the distorted and undistorted images. Displacement vectors can be 

derived using common cross-correlation algorithms developed primarily for PIV applications. A 

common open-source software is OPEN-PIV [50]. PIV cross correlation algorithms result in loss 

of resolution, especially when higher BOS sensitivity requires a bigger integration window [51]. 

In computer science, the calculation of the displacement vectors from a pair of images is 

commonly referred to as optical flow estimation. Atcheson et al. [52] compared optical flow 

algorithms with cross-correlation algorithms for BOS flow visualization and  found that optical 



flow algorithms significantly increased the resolution of BOS. Settles and Hargather [24] 

concluded although  image cross-correlation processing is more straightforward, optical flow 

algorithms are preferable due to a better resolution Horn-Schunck [53] and Lucas–Kanade [54] are 

the two most common optical-flow algorithms used. In this study, in addition to the Horn-Schunck 

and Lucas–Kanade algorithms , more complex optical flow algorithms, such as Farneback's 

algorithm [55], Brox algorithm [56] and TV-L1 algorithm[57], were applied to the BOS dataset. 

Usually, optical flow algorithms are computationally expensive; making real-time imaging almost 

impossible [24]. However, the computational speed of optical flow algorithms can be improved 

significantly by developing an optical flow algorithm on a GPU architecture, such as the Nvidia1 

CUDA platform. In this study, all the optical flow algorithms, except for Horn-Schunck, were 

developed using Nvidia’s CUDA platform for faster computation. In the following section, the 

common principals behind optical flow estimation and the algorithms used in this study are 

described.  

1.2.1.A  Optical Flow Estimation of the Flow Field  

Optical flow is apparent movement of brightness patterns in an image which is formed from the 

relative motion of an object with regards to a viewer. The concept of optical flow estimation arises 

from Gibson’s [58] work on the visual stimulus provided to animals. Considering the surface that 

is being imaged is flat with uniform illumination across the surface, the brightness at a point in the 

image is proportional to reflectance of the surface at that point. Assuming that the reflectance 

varies smoothly, the brightness data is differentiable. Optical flow is defined as the 2D vector field 

describing apparent motion of each pixel point between two images 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡0), 𝐼𝐼(𝑥𝑥 ,𝑦𝑦 , 𝑡𝑡1). Here 

                                                 
1 The use of trade or firm names in this publication is for reader information and does not imply endorsement by the 
U.S. Department of Agriculture of any product or service. 



𝐼𝐼 is the brightness values associated with each point of the image (𝑥𝑥,𝑦𝑦) at the timestamp 𝑡𝑡1 and 

𝑡𝑡2. 

• Brightness Conservation Constraint (Aperture problem)   

Assuming that the grey value (brightness) of a pixel does not change by displacement, the 

following relation can be written   

𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝐼𝐼(𝑥𝑥 + 𝛿𝛿𝛿𝛿,𝑦𝑦 + 𝛿𝛿𝛿𝛿, 𝑡𝑡 + 𝛿𝛿𝛿𝛿)  (10) 

Based on this assumption, also known as conservation of brightness, the change of brightness of a 

specific pixel point between a pair of images is due to the apparent motion of those pixels. 

Conservation of brightness principal could be restated as if a point in the object is selected, and 

then the point is followed between a pair of images, the intensity of the pixel does not change. The 

linearized version of the brightness conservation assumption leads to optical flow constraint: 

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛿𝛿𝛿𝛿
𝛿𝛿𝑡𝑡

. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0  (11) 

Here 𝑢𝑢, 𝑣𝑣 are the velocity (displacement) vectors associated with the flow field. Conservation of 

brightness is a conceptual concept that is not always correct, because various external sources have 

an effect of the brightness of a pixel. Moreover, equation (11) is based on the assumption that 

apparent motion between a pair of images is small and it is in order of the size of a pixel. Thus 

equation (11) by itself may not provide a good estimation of big movements in the image. 

Nevertheless, Equation (11) states that the apparent motion is dependent on both spatial and 

temporal gradient of pixel intensities. There are two unknowns 𝑢𝑢 and 𝑣𝑣 in equation 11, thus the 

optical flow constraint cannot provide information of the 2D vector 𝑢𝑢, 𝑣𝑣) by itself. Additional 

constraints are needed to solve for 𝑢𝑢 and 𝑣𝑣.  



• Smoothness Constraint  

One of the earliest attempts to provide a solution for 𝑢𝑢 and 𝑣𝑣 in equation (11) was provided by 

Horn-Schunck [53]. In this methodology, they introduced another constraint known as the 

smoothness constraint. This constraint states that for very slow displacement and movements the 

square of the gradient of velocity should be very small, mathematically  

𝛦𝛦𝑆𝑆2 = �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2
  (12) 

Here 𝐸𝐸𝑆𝑆2  is the energy function associated with the gradient of velocity that should be minimized. 

Equation (12) and (11) could be combined to provide the following energy function: 

∫ �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ 𝛼𝛼Ω (|∇𝑢𝑢|2 + |∇𝑣𝑣|2) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (13) 

where Ω represent the image domain, and 𝛼𝛼 is a factor which weights in the smoothness constraint. 

After basic transformations, it is shown that minimization of equation (13) is equivalent to 

minimization of  

∫ (𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

)2 + 𝛼𝛼Ω ((∇.𝑈𝑈)2 + |∇ × 𝑈𝑈|2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (14) 

where 𝑈𝑈 = 𝑢𝑢 ∙ 𝚤𝚤̂ + 𝑣𝑣 ∙ 𝚥𝚥̂ is the velocity vector. In fluid mechanics, minimization of divergence of 

velocity (∇.𝑈𝑈) corresponds to the fact that the flow is incompressible, and minimization of ∇ × 𝑈𝑈 

signifies that the vorticity, corresponding to the flow field between a pair of images, is minimized 

• Solution Scheme for Horn-Schunck 
The Horn-Schunck algorithm is one of the fundamental algorithms in optical flow measurements, 

and many algorithms are based on it. In this methodology, to solve for  𝑢𝑢 and 𝑣𝑣 , the Euler-



Lagrange equation is applied to the energy function shown in equation (14), resulting to the 

following system of Partial differential equations: 

Ix �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� − α2∇2𝑢𝑢 = 0  (15.a) 

Iy �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑢𝑢. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� − α2∇2𝑣𝑣 = 0  (15.b) 

Approximating the Laplace of velocity as an average velocity of surrounding pixels (∇2u ≈ κ(u� −

u)and ∇2v ≈ κ(v� − v), the equations 15 can be simplified as: 

(𝛼𝛼2 + 𝐼𝐼𝑥𝑥2)𝑢𝑢 + 𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦𝑣𝑣 = 𝛼𝛼2𝑢𝑢� − 𝐼𝐼𝑥𝑥𝐼𝐼𝑡𝑡  (16.a) 

𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦𝑢𝑢 + �𝐼𝐼𝑦𝑦2 + 𝛼𝛼2�𝑣𝑣 = 𝛼𝛼2𝑣̅𝑣 − 𝐼𝐼𝑦𝑦𝐼𝐼𝑡𝑡  (16.b) 

Thus, 𝑢𝑢 and 𝑣𝑣 can be obtained by solving the following system of equations through iteration. 

�𝛼𝛼2 + 𝐼𝐼𝑥𝑥2 + 𝐼𝐼𝑦𝑦2�𝑢𝑢 = +�𝛼𝛼2 + 𝐼𝐼𝑦𝑦2�𝑢𝑢� − 𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦𝑣̅𝑣 − 𝐼𝐼𝑥𝑥𝐼𝐼𝑡𝑡   (17.a) 

�𝛼𝛼2 + 𝐼𝐼𝑥𝑥2 + 𝐼𝐼𝑦𝑦2�𝑣𝑣 = +(𝛼𝛼2 + 𝐼𝐼𝑥𝑥2)𝑣̅𝑣 − 𝐼𝐼𝑥𝑥𝐼𝐼𝑦𝑦𝑢𝑢� − 𝐼𝐼𝑦𝑦𝐼𝐼𝑡𝑡   (17.b) 

• Gradient constancy constraint: 

The brightness conservation constraint has the drawback that slight changes in brightness can 

influence the results. Uras[59] introduced another reasonable constraint, besides equation (11). 

Based on equation (11), he showed that the following system of equations would hold : 

𝜕𝜕2𝐼𝐼
𝜕𝜕𝜕𝜕𝜕𝜕𝑡𝑡

+ 𝑢𝑢. 𝜕𝜕
2𝐼𝐼

𝜕𝜕𝑥𝑥2
+ 𝑣𝑣. 𝜕𝜕2𝐼𝐼

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
= 0  (18.a) 

𝜕𝜕2𝐼𝐼
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑢𝑢. 𝜕𝜕2𝐼𝐼
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑣𝑣. 𝜕𝜕
2𝐼𝐼

𝜕𝜕𝑦𝑦2
= 0  (18.b) 

This system of equations could be rewritten as : 



𝐷𝐷
𝐷𝐷𝐷𝐷

(∇𝐼𝐼) = 0 (19) 

In other words, in this constraint, it is assumed that the gradient of the brightness of the images 

doesn’t vary due to displacement: 

∇𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = ∇𝐼𝐼(𝑥𝑥 + 𝛿𝛿𝛿𝛿,𝑦𝑦 + 𝛿𝛿𝛿𝛿, 𝑡𝑡 + 𝛿𝛿𝛿𝛿) (20) 

Here ∇ denotes the spatial gradient. This assumption allows accounting for a small variation in the 

brightness of images. In the general case, equation 19 will not hold, the more accurate general 

equation is : 

𝐷𝐷
𝐷𝐷𝐷𝐷

(∇𝐼𝐼) = 𝐌𝐌T∇I  (21) 

Here 𝐌𝐌𝑇𝑇 is the transpose of the following (2 X 2) matrix : 

𝐌𝐌 = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

� (22) 

Equation 21 can be rewritten as  

𝐇𝐇𝑈𝑈 = −∇𝐼𝐼𝑡𝑡 + 𝑈𝑈. 𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷
− 𝑀𝑀𝑇𝑇∇𝐼𝐼 (23) 

Here 𝐇𝐇 is the Hessian with respect to spatial coordinates. Knowing that equation (11) holds, (23) 

becomes: 

𝐇𝐇𝑈𝑈 = −∇𝐼𝐼𝑡𝑡 − 𝑀𝑀𝑇𝑇∇𝐼𝐼 (24) 

Equation 24 shows that in order for equation 19 to hold �|𝑀𝑀𝑇𝑇∇𝐼𝐼|� ≪ ∇𝐼𝐼𝑡𝑡. Uras discussed although 

the situations this condition is not satisfied can easily be produced, experience has shown that this 



condition holds in most cases. In order to solve for 𝑈𝑈 = (𝑢𝑢, 𝑣𝑣), the following linear system is 

solved with the exception where 𝐷𝐷𝐷𝐷𝐷𝐷𝐇𝐇 vanishes: 

𝐇𝐇𝑈𝑈 = −∇𝐼𝐼𝑡𝑡 (25) 

It can be shown that equation 25 is the same as equation 19. The gradient constancy constraint 

allows a small variation in the image brightness and helps to solve for the displacement vector 

(𝑢𝑢, 𝑣𝑣) by using a constraint that doesn’t vary under image brightness fluctuations. Compared to 

brightness conservation-equation (10), image gradient conservation is more helpful to resolve 

translation motions, while brightness conservation is better for more complicated motions 

• Multiscale Approach. 

The optical flow constraint is only valid when the partial derivatives can be correctly 

approximated. Such as when the motion is small, or the gradient of the image is linear. In order to 

estimate large displacements, the optical flow is usually embedded in a multi-scale strategy. One 

of these strategies is known as the image pyramid method. In this method, the image pyramid is 

made by repeatedly downsampling an image by a given factor. This factor can have any value 

smaller than one and depends on the image size and the sensitivity of the deployed algorithm. The 

optical flow is found on the smallest image in the pyramid and is used to unwarp the next largest 

image. Interpolation is used for the fractional pixel locations 

• Variational Model for optical flow estimation 

To estimate the optical flow, Brox et al. [56] derived an energy function that penalized deviations 

from model assumptions. The first energy function is the measurement of global deviation from 

conservation of brightness and gradient constancy assumption , equations (10) and (20). Letting 

𝐱𝐱 ≔ (𝑥𝑥,𝑦𝑦, 𝑡𝑡)𝑇𝑇and 𝐰𝐰 ≔ (𝑢𝑢, 𝑣𝑣, 1)𝑇𝑇 the energy function is written as : 



𝐸𝐸1(𝑢𝑢, 𝑣𝑣) = ∫ 𝜓𝜓(|𝐼𝐼(𝐱𝐱 + 𝐰𝐰) − 𝐼𝐼(𝐱𝐱)|2 + 𝛾𝛾(|∇𝐼𝐼(𝐱𝐱 + 𝐰𝐰) − ∇𝐼𝐼(𝐱𝐱)|2))𝑑𝑑𝐱𝐱Ω   (26) 

Where 𝛾𝛾 is a weight function between both constraints. In order to make the energy function more 

robust, Brox et al applied a concave function 𝜓𝜓(𝑠𝑠2) = √𝑠𝑠2 + 𝜖𝜖2, which is the modified 𝐿𝐿1 

minimization to the first term in equation 26. Afterwards, they introduced a smoothness term 

which explains the assumption that the model is piecewise smooth which, is expressed as : 

𝐸𝐸2 = ∫ 𝜓𝜓(|∇3𝑢𝑢|2 + |∇3𝑣𝑣|2)Ω   (27) 

Where the operator ∇3 is the tempo-spatial gradient. In the case of comparing two consecutive 

frames of images, the operator is replaced by the spatial gradient, (Horn-Schunck smoothness 

constraint). The total energy function is the weighted sum between the two energy functions  

𝐸𝐸(𝑢𝑢, 𝑣𝑣) = 𝐸𝐸1 + 𝛼𝛼𝐸𝐸2  (28) 

Here 𝛼𝛼 is the regularization parameter. Brox et al approach uses coarse to fine warping method 

(image pyramids) to find the (𝑢𝑢, 𝑣𝑣) which minimize energy function 𝐸𝐸. 

• TV-L1 optical flow Estimation 

As mentioned earlier, the Horn-Schnuck approach is a good method when the displacements are 

small. In the presence of large displacements, it is common to replace the optical flow constraint 

in equation 11 with : 

𝐼𝐼(𝐱𝐱 + 𝐰𝐰) − 𝐼𝐼(𝐱𝐱) = 0  (29) 

This equation is not linear; therefore commonly it is linearized using Taylor expansion, resulting 

in  

𝐹𝐹(𝐰𝐰) = ∇𝐼𝐼(𝐱𝐱 + 𝐰𝐰𝟎𝟎). (𝐰𝐰−𝐰𝐰𝟎𝟎) + 𝐼𝐼(𝐱𝐱 + 𝐰𝐰𝟎𝟎) − 𝐼𝐼(𝐱𝐱)  (30) 



Zach et al. [57]and Sanchez et al. [60] defined an energy function  

𝐸𝐸(𝑤𝑤) = ∫ (|∇𝑢𝑢| + |∇𝑣𝑣|)Ω + 𝜆𝜆|𝐹𝐹(𝐰𝐰)|  (31) 

To minimize the energy function, Zachet al. and Sanchez et al. introduced the following convex 

relation: 

𝐸𝐸(𝑤𝑤) = ∫ (|∇𝑢𝑢| + |∇𝑣𝑣|)Ω + 1
2Θ

|𝑢𝑢 − 𝑣𝑣| + 𝜆𝜆|𝐹𝐹(𝐰𝐰)| 32) 

Setting Θ to a very small value forces the minimization to occur where 𝑢𝑢 and 𝑣𝑣 are nearly equal, 

which reduces to the original energy function defined in equation (32) 

• Lucas-Kanade method  

Almost concurrently with the seminal work of Horn-Schunck, Lucas-Kanade [54] introduced 

another methodology and mindset for optical flow estimation. In their work, Lucas-Kanade 

assumed that the motion between the two images is slow and the displacement is constant in each 

small blocks of the image. Therefore, equation (11) can hold for all pixel of a window 𝑊𝑊 . Writing 

the optical flow equation for each point of the window will result to the following system of 

equations 

�
𝐼𝐼𝑥𝑥(𝑃𝑃1) 𝐼𝐼𝑦𝑦(𝑃𝑃1)
⋮ ⋮

𝐼𝐼𝑥𝑥(𝑃𝑃𝑛𝑛) 𝐼𝐼𝑦𝑦(𝑃𝑃𝑛𝑛)
� . �𝑢𝑢𝑣𝑣� = �

−𝐼𝐼𝑡𝑡(𝑃𝑃1)
⋮

−𝐼𝐼𝑡𝑡(𝑃𝑃𝑛𝑛)
�  (33) 

Where 𝑃𝑃𝑛𝑛 indicates the pixel inside the block window. Simplifying this equation, it could be written 

as 𝐴𝐴 ∙ 𝑣𝑣 = 𝑏𝑏 . This system of equations has more equation than unknowns, therefore using the 

Least Square principle, both sides of the equation is multiplied by transpose matrix 𝐴𝐴𝑇𝑇: 

𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴 = 𝐴𝐴𝑇𝑇𝑏𝑏  (34) 



Solving for the velocity matrix, the following equation is formed  

𝑣𝑣 = (ATA)−1ATb  (35) 

The computation will be as  

�𝑢𝑢𝑣𝑣� = �
Σ𝑊𝑊2 �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
2

 Σ𝑊𝑊2 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�

Σ𝑊𝑊2 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� Σ𝑊𝑊2 �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
2 �

−1

∙  �
−Σ𝑊𝑊2 �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� ∙ (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
)

−
 

Σ𝑊𝑊2 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� ∙ (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
)
� (36) 

Here 𝑊𝑊 is the window function to emphasize the constraint at the center of each window.  

• Farneback method  

In a totally different approach, Farneback [55] introduced another algorithm, which does not solve 

for equation (11). Instead, this methodology approximated a neighborhood of both frames at a time 

𝑡𝑡1 and 𝑡𝑡2 using a polynomial function. For the case of a quadratic polynomial, the image brightness 

(intensity) can be written as:  

𝐼𝐼𝑡𝑡1(𝑥𝑥) = 𝑥𝑥𝑇𝑇𝐴𝐴1𝑥𝑥 + 𝑏𝑏1𝑇𝑇𝑥𝑥 + 𝑐𝑐1 (37) 

A new signal can be constructed using a global displacement (d) as 

𝐼𝐼𝑡𝑡1(𝑥𝑥 − 𝑑𝑑) = (𝑥𝑥 − 𝑑𝑑)𝑇𝑇𝐴𝐴1(𝑥𝑥 − 𝑑𝑑) + 𝑏𝑏1𝑇𝑇(𝑥𝑥 − 𝑑𝑑) + 𝑐𝑐1 

= 𝑥𝑥𝑇𝑇𝐴𝐴1𝑥𝑥 + (𝑏𝑏1 − 2𝐴𝐴1𝑑𝑑)𝑇𝑇𝑥𝑥 + 𝑑𝑑𝑇𝑇𝐴𝐴1𝑑𝑑 − 𝑏𝑏1𝑇𝑇𝑑𝑑 + 𝑐𝑐1 (38) 

𝐼𝐼𝑡𝑡2(𝑥𝑥) = 𝑥𝑥𝑇𝑇𝐴𝐴2𝑥𝑥 + 𝑏𝑏2𝑇𝑇𝑥𝑥 + 𝑐𝑐 (39) 

Since 𝐼𝐼𝑡𝑡1(𝑥𝑥 − 𝑑𝑑) = 𝐼𝐼𝑡𝑡2(𝑥𝑥), equating the coefficient in the quadratic polynomial yields to 𝑏𝑏2 = 𝑏𝑏1 −

2𝐴𝐴1𝑑𝑑 . From 𝑏𝑏2 = 𝑏𝑏1 − 2𝐴𝐴1𝑑𝑑 the transition value 𝑑𝑑 could be solved if 𝐴𝐴1 is non-singular. In 

principle, equation (38) and (39) can be equated at every pixel, and the solution may be obtained 



iteratively. Farneback noted that the pointwise solution is too noisy. Instead, the displacement may 

be assumed to be slow-varying and satisfies a neighborhood of 𝑊𝑊values of 𝑥𝑥, this reduces to a 

problem similar to (36) and the solution is obtained as  

𝑑𝑑 = (∑𝑊𝑊𝐴𝐴𝑇𝑇𝐴𝐴)−1 ∑𝑊𝑊𝐴𝐴𝑇𝑇Δ𝑏𝑏 (40) 

Here 𝐴𝐴(𝑥𝑥) = 1/2( 𝐴𝐴1(𝑥𝑥) + 𝐴𝐴2(𝑥𝑥)) and Δ𝑏𝑏 = −1/2(𝑏𝑏2(𝑥𝑥) − 𝑏𝑏1(𝑥𝑥). It is interesting to note the 

similarities between equation (40) and (36) reveals some similarities and differences between the 

Lucas-Kanade method and The Farneback Method. Lucas Kanade uses the gradient information 

in the vicinity of the pixels of interest, while the Farneback method approximates the same 

information using with the coefficients of a local quadratic polynomial. 

1.3 Experimental setup  

The measurements described in this section are part of a larger study that is measuring and 

modeling pyrolysis of common plant species located in the southern United States[40]. As part of 

this larger study, pyrolysis gases were measured in association with a series of fires performed in 

a wind tunnel. The wind tunnel was the main element of the experimental setup. This low-speed 

wind tunnel has a fan which is driven by 1hp electric motor, which is connected to a micro inverter 

which controls the wind speed with an output frequency. The fuel bed was 2𝑚𝑚 long with a width 

of 0.8 𝑚𝑚 width. The wind tunnel utilized the experiments to be performed with and without wind. 

The wind is measured at approximately 30 cm above the fuel bed. To create a reproducible flame 

front, longleaf pine needles were uniformly distributed to provide a porous fuel bed. Small nursery 

plants were interspersed in the second meter of the fuel bed. More detail explanation of the fuel 

bed configuration is provided in the experimental configuration and treatment section (section 1.4). 

Figure 2 shows the model of the wind tunnel. 



 

Figure 2. 3D model of the wind tunnel 

Instruments were deployed to the wind tunnel to initially capture, measure, and characterize 

pyrolysis products from the live plant and furthermore, quantify, and evaluate the effects of heat 

transfer mechanism on the pyrolysis products. The devices that were used for pyrolysis product 

sampling was a Bruker Tensor T37, Bruker OPAG-22, and TELOPS. In addition to these live 

sampling instruments, an array of 9 stainless steel tubes were inserted vertically into the fuel bed. 

these tubes were used to pump the gases into the canisters. The canisters were later analyzed offline 

using gas chromatography technique  

In addition to the gas sampling instruments described, the mass of a single plant, 

temperature and the relative humidity of the wind tunnel was measured. Moreover, total and 

radiant heat fluxes at the top of the fuel bed were measured using a Medterm Schmidt-Boelter 

sensor. The description of these set of instruments are followed 



1.3.1 Mass measurement of a single plant 

It is important to have a quantitative understanding of the mass loss rate of live nursery 

plants. Because the amount of mass lost during the pyrolysis process can be correlated to pyrolysis 

products. Moreover, the mass loss rate can also be used to describe the heat transfer effects on the 

pyrolysis process. To measure the mass of single live nursery plant, a high precision scale is 

required to record the mass of the plant with high temporal resolution. The scale used had 1 mg 

resolution and 6hz sampling rate. A sample of potted nursery plant was placed with care on top of 

the scale. Because of the high sensitivity of the scale, it was important to make sure that the plant-

scale system was not affected by any other foreign objects (i.e., longleaf pine needle and 

surrounding plants). A model for the scale-plant setup is demonstrated in figure 3 

 

Figure 3. Schematic of Nursery Plant- Scale System 

1.3.2 Radiant and Heat flux measurements  

The importance of heat transfer has been already emphasized. As mentioned, although there is no 

instrument which can directly measure radiative and convective heat transfer, convective heat 

Plant 

Longleaf Pine needle 



transfer can be quantitively calculated by measuring total and radiative heat flux using a Schmidt-

Boelter sensor. Two Schmidt-Boelter sensors were placed before and after the plant-scale system 

. figure 4 shows the position of these instruments 

 

Figure 4. Schematic of Schmidt-Boelter & Radiometer System 

The Schmidt Boelter gauges absorb the heat at one surface and transfer the heat in the normal 

direction to the absorbing surface. The voltage output of the sensor is generated by a thermopile, 

which it responds to the difference in temperature of the surface and plane beneath the surface. 

The radiometer on the sensor consists of a purged radiating transmitted window. The voltage 

output of the radiometer corresponds to the radiation on the surface of the sensor. 

To calculate total and radiative heat flux of the sensor, the gauges are calibrated. The calibration 

equation for the Medtherm gauges used in this system is provided as: 

𝑄𝑄 = 𝐴𝐴𝑉𝑉𝐵𝐵  (41) 

Schmidt-Boelter & Radiometer 
Fin 



Here 𝑉𝑉, is the voltage output, 𝐴𝐴 and 𝐵𝐵 are constants defined in table 1. The unit of 𝑄𝑄 in this equation 

is 𝑘𝑘𝑘𝑘/𝑚𝑚2. The sensors are connected to Campbell scientific CR3000 datalogger, to log and record 

the voltage difference in real time.  

Table 1 Calibration constants used in equation 41 

Sensor type Location A B 
Radiometer Before scale-setup 5.582660 1.064960 

Total (Schmidt-
Boelter) Before scale-setup 7.430203 1.059662 

Radiometer After scale-setup 6.177155 1.076644 
Total (Schmidt-

Boelter) After scale-setup 7.900974 1.0660964 

1.3.3 Thermocouple system  

A system of K-type thermocouples was created to mimic temperature profile around a single plant. 

The image of such a thermocouple system is demonstrated in figure 5 



 

Figure 5. Thermocouple tree system 

In the last phase of the experimental configurations, the thermocouple tree system was replaced 

with 14 thermocouples, which were scattered through the fuel bed. The configuration of this 

thermocouple setup can be seen in figure 6. This configuration created the opportunity to record 

the temperature of the gases at the moments that they were analyzed by the FTIR system 

1 

2 
3 

4 

1 

2 3 

4 



 

Figure 6. configuration of the thermocouple system for the last phase The blue circle 
represents the thermocouple location and the green circle shoes the plant-scale setup. 

1.3.4 IR imaging 

A longwave infrared camera (LWIR) was mounted on top of the wind tunnel to provide the top-

view temperature and IR emission mapping of the fuel bed. A sample of the IR emission map is 

seen in figure 7: 
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Figure 7. a) IR camera position ,b) IR image Sample 
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1.3.5 BOS System  

The BOS system was constructed as an addition to the tunnel. A simple random noise function 

generated the background patterns on transparent paper which were placed on a lightbox for 

illumination. Images were captured using a DSLR camera with a frame rate of 60 frames per 

second. To capture image distortion, the camera was focused manually on the background noise 

pattern, and the camera frame was adjusted to maximize the amount of the noise background seen. 

Figure 8-a shows a schematic of the simple BOS system in the low-speed wind tunnel. Figure 8-b 

shows an image obtained by the camera. Note the small portion of the fuel bed that was visible.  

 
Figure 8.  Simple schematic experimental setup. (a) The experimental setup inside the 

low-speed wind tunnel (b) the image captured by the camera  

In order to estimate density gradients, it is also necessary to measure the distances required 

for the calculation of constant 𝐺𝐺1 and 𝐺𝐺2 in equations 6 and 7. These distances and other needed 

parameters are summarized in Table-2. One should keep in mind that these values are dependent 

on the experimental condition (i.e. 𝑛𝑛∞,𝐾𝐾(𝜆𝜆)) and experimental setup (i.e. 𝑍𝑍𝐷𝐷 ,𝑓𝑓, 𝐿𝐿). Once 𝐺𝐺1 and 

𝐺𝐺2 are known, 𝐶𝐶1 and 𝐶𝐶2 can be calculated by knowing the value 𝛽𝛽, which for gases is 1/𝑇𝑇∞, where 

Long leaf Pine Needle Fuel bed 

Fan 
Noise Background  
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Camera  
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𝑇𝑇∞ is the ambient temperature. Also included in the table 2 is Camera Pixel Size which is necessary 

for calibrating displacement, Δ𝑦𝑦′, in equation 6. 

Table 2. Properties used to calculate 𝐺𝐺1 in equation 6  

Property Value 

𝑛𝑛∞ 1.0023 

𝑍𝑍𝐷𝐷 3.28𝑚𝑚 

𝑓𝑓 0.2𝑚𝑚 

𝐿𝐿 0.6 𝑚𝑚 

𝐾𝐾(𝜆𝜆) 0.23 ∙ 10−3 (𝑚𝑚3\𝑘𝑘𝑘𝑘) 

Camera Pixel Size 3.92 ∙ 10−6 𝑚𝑚 

1.4 Experimental configurations and treatments  

A total of 97 fires were burned, and data was collected for BOS and other instruments. Forty-two 

fires had no wind and fifty-five had an imposed wind. The mean fuel moisture content of the 

longleaf pine needles was 9.5 ± 0.2 and 10.4 ± 0.3 percent for the wind and no wind fires, 

respectively. The rate of spread was 12.4 ± 0.5 𝑚𝑚𝑚𝑚/𝑠𝑠 and 5.3 ± 0.1 𝑚𝑚𝑚𝑚/𝑠𝑠 for the wind and no 

wind fires respectively. The experiments were divided into three phases. The detail of each phase 

is followed  

In the first phase, which was the experiments done between November 10th, 2017 to November 

18th, 2017, Total of 37 2experiments were done. In this set of experiments, the ambient conditions 

were the same as the ambient condition of the building. Out of the total of these 37 experiments, 

28 were done without the wind, and the remaining experiments were with the external wind of 

                                                 
2 This number corresponds to number of experiments recorded from various Instruments.  



0.44𝑚𝑚/𝑠𝑠. In this phase, 13 different experimental configurations were analysed. Table 3 shows 

information regarding these configurations 

Table 3. Experimental configurations for phase 1 of the study 

Live Nursery Plant 
Weight of 
Longleaf 

Pine needle 

Number of 
experiments 

Number of 
live nursery 

plants 
Wind condition Notes 

Inkberry (Ilex glabra 
(L.) A. Gray) 

800 𝑔𝑔 3 41 No Wind   

Inkberry (Ilex glabra 
(L.) A. Gray) 

800 𝑔𝑔 3 24 No Wind   

Inkberry (Ilex glabra 
(L.) A. Gray) 

1000 𝑔𝑔 2 24 0.44 𝑚𝑚/𝑠𝑠 wind   

Inkberry (Ilex glabra 
(L.) A. Gray) 

1000 𝑔𝑔 2 41 0.44 𝑚𝑚/𝑠𝑠 wind   

Inkberry (Ilex glabra 
(L.) A. Gray) 

1000 𝑔𝑔 4 24 No Wind   

Inkberry (Ilex glabra 
(L.) A. Gray) 

1000 𝑔𝑔 4 41 No Wind   

Inkberry (Ilex glabra 
(L.) A. Gray) 

1000 𝑔𝑔 2 34-47 No Wind   

Inkberry (Ilex glabra 
(L.) A. Gray) 

1000 𝑔𝑔 3 34-47 0.44 𝑚𝑚/𝑠𝑠 wind   

Fetterbush Lyonia 
lucida (Lam.) K. 
Koch 

1000 𝑔𝑔  4 30 No Wind  Elevated 
plants 

Darrow’s blueberry 
Vaccinium darrowii  

1000 𝑔𝑔  2 30 No Wind   

Fetterbush& 
Darrow’s blueberry 

1000 𝑔𝑔 2 31 No Wind Elevated 
plants 

 1000 𝑔𝑔 2  0.44 𝑚𝑚/𝑠𝑠 wind  
 800 𝑔𝑔 4  No Wind  

 

As can be seen from table 3, in most of the experiments, the weight of the pine was 1000 𝑔𝑔.The 

main reason for the increase was to have a better fire propagation.  

In the second phase, which was the experiments done between February 22, 2018, and March 1st, 

2018, a total of 23 experiments were done. In this phase, in contrast with the previous phase, the 

air was conditioned to mimic the wintertime in the southern united states; thus, the air was kept at 



4℃ with a relative humidity of (40%). In all these experiments, the wind speed was set to be 

0.8𝑚𝑚/𝑠𝑠. In this phase, four different experimental configurations were analyzed. Table 4 shows 

information regarding these configurations 

Table 4. Experimental configurations for phase 2 of the study 

Live Nursery Plant 
Weight of 
Longleaf 

Pine needle 

Number of 
experiments 

Number of 
live nursery 

plants 
Wind condition 

Fetterbush Lyonia 
lucida (Lam.) K. 

Koch 
1000 𝑔𝑔 7 54 0.8 𝑚𝑚/𝑠𝑠 wind 

Darrow’s blueberry 
Vaccinium darrowii 1000 𝑔𝑔 5 54 0.8 𝑚𝑚/𝑠𝑠 wind 

Fetterbush& 
Darrow’s blueberry 1000 𝑔𝑔 6 54 0.8 𝑚𝑚/𝑠𝑠 wind 

 1000 𝑔𝑔 5  0.8 𝑚𝑚/𝑠𝑠 wind 
 

In the third phase, which was the experiments done between October 30th, 2018, and November 

2nd, 2018, a total of 24 experiments was done. In this phase, except for one set of the data, the air 

was not conditioned at it was kept the same as the ambient room condition. In all of these 

experiments, the wind speed was set to have a value of 0.4 𝑚𝑚/𝑠𝑠. In this phase, four different 

experimental configurations were analysed. Table 5 shows information regarding these 

configurations 



Table 5. Experimental configurations for phase 3 of the study 

Live Nursery Plant 

Weight of 
Longleaf 

Pine 
needle 

Number of 
experiments 

Number of live 
nursery plants Wind condition 

Fetterbush Lyonia 
lucida (Lam.) K. 
Koch 

1000 𝑔𝑔  8 74 0.44 𝑚𝑚/𝑠𝑠 wind 

Sparkleberry 
Vaccinium 
arboreum Marshall 

1000 𝑔𝑔  8 74 0.44 𝑚𝑚/𝑠𝑠 wind 

Inkberry (Ilex 
glabra (L.) A. Gray) 

1000 𝑔𝑔 6 74 0.44 𝑚𝑚/𝑠𝑠 wind 

 1000 𝑔𝑔 2  0.44 𝑚𝑚/𝑠𝑠 wind 

1.5 BOS Data Analysis  

1.5.1 Flow Visualization 

In the first step, we applied the optical flow algorithms that were discussed in section 1.21.A. The 

displacement was calculated by comparing the images of a distorted and undistorted background. 

The blue channel of the three-channel (RGB) DSLR camera image showed less detail of the flame 

itself, leading to a greater number of meaningful data points. The optical flow algorithms estimated 

the displacement in 𝑥𝑥 and 𝑦𝑦 directions (Δ𝑥𝑥,Δ𝑦𝑦) , which were related to 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 and 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 using 

equation 6. For visualization purposes, the magnitude of the density gradient vector ∇𝜌𝜌 was 

calculated and visualized in Figure 9. The first row shows the raw image of the flame and the 

undistorted reference frame. The second row shows red, green and blue channels of both images. 

The third row demonstrates the calculated magnitude of the density gradient vector ∇𝜌𝜌 using 

different optical flow algorithms and block matching algorithm. From the images, the Farneback 

algorithm produces a smoother visualization with less visible noise compared to all other 

algorithms.  



 
Figure 9. Imagery, color channels (red, green, blue) and calculated magnitude of density 

gradient for different optical flow algorithms 

1.5.2 Density Gradient Image Velocimetry  

Quantitively the visualizations developed in the previous section provide data on the density 

gradient and do not provide information about the velocity structures of the flow field. Since 



velocity is crucial to understand the flow behavior in different conditions, velocimetry techniques 

which use BOS have been proposed [61, 62]. Bühlmann et al. [61] suggested that “PIV analysis” 

of the BOS displacement field (using density gradient data as tracing particles) could be performed 

to estimate local convective velocities spatially. Most of the velocities obtained by “PIV-analysis” 

of the displacement field represent the velocities of the bigger structures of the flow field with no 

details at small scale due to the lack of resolution [63]. One main reason for this lack of resolution 

is that the “PIV analysis” commonly uses a block matching algorithm for its calculation. Since 

optical flow algorithms have a higher spatial resolution, they were applied to the displacement data 

set. Since density gradient data has been traced, we refer to this methodology as Density Gradient 

Image Velocimetry (DGIV). Furthermore, the density gradient data were vectors. Thus, calculation 

of the displacement vectors required a separate displacement calculation for each vector 

component.  

As in density gradient calculation, algorithms that are sensitive to all the scales of motion are 

required. As discussed in section 1.2.1.A, this group of optical flow algorithms uses a 

multiresolution coarse-to-fine algorithm called an image pyramid. An image pyramid is made by 

repeatedly downsampling an image by a given factor. This factor can have any value smaller than 

one and depends on the image size and the sensitivity of the deployed algorithm. The optical flow 

was found on the smallest image in the pyramid and is used to unwarp the next smallest image. 

Interpolation was used for the fractional pixel locations. This process was then iterated until 

reaching the original image resolution [64]. Brox, TV-L1, and Farneback algorithms incorporate 

this procedure. We used the Brox algorithm because it takes into account conservation of 

brightness gradients.  



Figure 10 demonstrates the procedure of vector field computation. The top left box shows the two 

consecutive raw images of the flame and the density gradient field computed using the Farneback 

algorithm. The top right plot shows the velocity vector field calculated using the Brox optical flow 

algorithm applied to the density gradient field. The bottom box shows magnification of the four 

boxed areas from the vector field superimposed on the density gradient magnitude. 



`  

Figure 10 Illustration of vector field calculation 

1.5.3 Estimation of Convective Heat Transfer using BOS  

The density gradient data and the velocity vectors could be used to estimate density, temperature, 

and subsequently convective heat transfer. However, this methodology is computationally 

expensive. Since convective heat transfer is generally related to the turbulent motion in the flow 



field, visualization of the turbulent structure could provide information on convective heat transfer.  

Following this idea, Hargather and Settles [65] proposed a new method of processing BOS images. 

They suggested processing of two different flow field images relative to one another instead of 

comparing a disturbed and undisturbed image of the noise background. This procedure reveals 

only the changes caused by fluctuation in the refractive flow field between the two images. 

Hargather and Settles further suggested that this technique visualized the turbulent part of the 

thermal plume. Using Hargather and Settles [65] rational, we propose a methodology to correlate 

fluctuations in the flow field to convective heat flux. Rewriting equation 2 as   

𝜖𝜖𝑦𝑦 = 1
𝑛𝑛 ∫

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 = −𝐿𝐿∙𝜌𝜌∞∙β∙K(λ)

𝑛𝑛∞
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�  (41) 

Equation 41 shows that the deflection angle,𝜖𝜖𝑦𝑦 is a function of the temperature gradient. According 

to Fourier's law heat flux is caused by a temperature gradient, therefore here we rewrite Equation 

3-12 as  

𝜖𝜖𝑦𝑦 = 1
𝑛𝑛 ∫

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 = 𝐿𝐿∙𝜌𝜌∞β∙K(λ)

𝑛𝑛∞
∙ 𝑞𝑞𝑦𝑦
𝑘𝑘

  (42) 

Here 𝑘𝑘 is the thermal conductivity and 𝑞𝑞𝑦𝑦 is the heat flux density in the 𝑦𝑦 direction. In this way 

(42) we related heat flux to the deflection angle. When convective heat transfer is present, heat 

flux density 𝑞𝑞 can be written as: 

𝑞𝑞
𝑘𝑘

= −∇𝑇𝑇 − 1
𝛼𝛼
∙ 𝑢𝑢′���⃗ 𝑇𝑇′������  (43) 

Here 𝛼𝛼 is the thermal diffusivity and 𝑢𝑢′ and T’ are velocity and temperature fluctuations. The 

additional term represents the heat transfer caused by turbulent convection. Considering only 

convection, −∇𝑇𝑇 can be ignored resulting in equation 44. 



𝜖𝜖𝑦𝑦 = 1
𝑛𝑛 ∫

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 = −𝐿𝐿∙𝜌𝜌∞∙β∙K(λ)

𝛼𝛼∙𝑛𝑛∞
𝑢𝑢′𝑇𝑇′������ = −𝐿𝐿∙K(λ)

𝛼𝛼∙𝑛𝑛∞
𝑢𝑢′𝜌𝜌′����� = − 𝐿𝐿

𝛼𝛼∙𝑛𝑛∞
𝑢𝑢′𝑛𝑛′������  (44) 

Equation 44 demonstrates that when a light ray travels in the 𝑧𝑧 direction and intersects a region of 

convective flow, the light will bend. This is the same phenomenon where an optical wave 

propagating through a medium experience irradiance (intensity) fluctuations also known as optical 

turbulence. Combining equation 44 with Hargather and Settles [65] methodology and applying the 

same steps used to developing equations 6 and 7, convection can be correlated to calculated 

displacement vectors as  

𝑢𝑢′𝜌𝜌′����� = − 𝛼𝛼∙𝑛𝑛∞𝑍𝑍𝐵𝐵
𝐾𝐾(𝜆𝜆)∙𝑍𝑍𝐷𝐷∙𝑓𝑓∙𝐿𝐿

Δ𝑦𝑦′ = −𝛼𝛼 ∙ 𝐺𝐺1 ∙ Δ𝑦𝑦′  (45) 

𝑢𝑢′𝜌𝜌′����� = − 𝛼𝛼∙𝑛𝑛∞
𝐾𝐾(𝜆𝜆)∙𝑍𝑍𝐷𝐷∙𝐿𝐿

Δ𝑦𝑦 = −𝛼𝛼 ∙ 𝐺𝐺2 ∙ Δ𝑦𝑦  (46) 

It has to be noted that displacements in equation 45 and 46 are calculated by comparing two 

consecutive frames of BOS image.  

1.5.4 Data Processing result for a single experiment  

Applying the procedures described above, the thermal plume derived velocity field, and estimated 

convective flux for flames subjected to two wind conditions are presented. This section provides 

a general understanding of the flow field and convective thermal plume around, and the 

interpretation for an individual Experiment. 

1.5.4.A Visualization of the Thermal Plume of Propagating flame  

For the flow visualization, 11,600 images were processed for a single burn. Since it is not feasible 

to show all these data, six images are shown in figure 11 for a no wind fire. In the images, the 

flame propagated from right to left; however, image 1 occurred in the time before image 2. For 



visualization purposes, all calculated properties were normalized to have a value between 0 and 

255 in the video files.  Due to the slow rate of spread of the flame, 100 to 200 seconds after ignition, 

the flow was seen moving from left to right. This flow was caused by natural entrainment of air 

towards the flame. As the flame entered the field of view, the thermal plume associated with the 

flame could be seen. Looking closely at the flame in the left image, the noise patterns around the 

flame flickered and moved. The optical flow algorithm captured this distortion to the visualize the 

thermal plume. When the fire left the field of view around 250 seconds after ignition, air 

entrainment towards the plume could be visualized again. Also, the heat flux from non-

combustible ash from the burned pine needles caused as small thermal plumes. 

In the second experimental set, the external wind speed was set to 0.44 𝑚𝑚/𝑠𝑠. Figure 11-b 

demonstrate the results of these experimental set. The initial frames of video 2 occur before the 

ignition time. Shortly after ignition, the thermal plume ahead of the flame became visible for 60 

seconds until the flame reached the field of view. The direction of the thermal plume was in the 

same direction as of the wind but as the flame approached the field of view, the thermal plume was 

more aligned with the direction of the flame due to the strong buoyancy force. Even though, the 

Byram’s convective number [66, 67] for this case was calculated to be 67 , which indicates the 

presence of high radiation power, BOS visualized an strong convective flow ahead of the flame. 

After 141 seconds from the ignition, as the flame passed the field of view, the wind was visualized. 

Since the ashes from the burnt fuel had higher temperatures than the ambient wind, a turbulent 

thermal boundary layer formed behind the flame. 



 
Figure 11 six snapshots of fire propagation in a vegetative fuel bed. (a) without the 

presence of wind (b) when an external wind of 𝒖𝒖 = 𝟎𝟎.𝟒𝟒𝟒𝟒 𝒎𝒎/𝒔𝒔 is present 

a 

b 



1.5.4.B Velocity Profile of Propagating Flame 

The results of applying the DGIV algorithm to the images in figure 11 can be seen in figures 12 

(no wind) and 13 (with wind). These images provide a general representation of the velocity field 

as the fire propagated in the fuel bed. The velocity profile was also evaluated along a vertical 

transect (black lines) that were selected to give a general understanding of the velocity vectors 

relative to flame location. With DGIV, if there was no density gradient, no fluid motion of the 

fluid could be detected.  

When no wind was present, the fire was buoyancy-driven, and the main motion of the thermal 

plume was upward. Because of baroclinic vorticity, vortices were generated next to the flame. 

These phenomena can be seen in the velocity vectors. The transect velocities in image one and two 

show the buoyancy-driven upward motion of hot gases in front of the fire. In the third and fourth 

image, the transects were located inside the plume. The velocity vectors showed a strong upward 

motion of the plume as well as the horizontal motions caused by baroclinic vorticity and turbulent 

convection. The transect velocities in the fifth and sixth images show velocity vector on the lee 

side of the fire plume. 



 
Figure 12 Velocity vector field of fire propagating in vegetative fuel when no wind is 

present 

Figure 13 showed the fire propagation when 0.44 m/s wind was present. Under this condition, also 

known as wind-driven fire, the direction of motion of the thermal plume was more horizontal and 

aligned to the direction of the wind. The velocity vectors captured the effect of wind, especially 



before flame entered the field of view. The transect vectors in the first three images show the 

motion of the wind-driven fire ahead of the flame before the flame entered the field of view. In 

image 4, the velocity transect was located a short distance ahead of the flame. The transect vectors 

demonstrated the combination of vertical motion due to buoyancy and horizontal motion caused 

by the wind. In image 5, the transect was at the close distance before the plume.  The vectors 

captured the combination of horizontal entrainment caused by the wind, along with buoyant 

motion cause by hot remaining ashes.  In Image 6, the transect vectors were further removed from 

the flame, and they captured the horizontal wind motion close to the surface.  



 
Figure 13 Velocity vector field of wind-driven fire.  

1.5.4.C Estimation of convective heat flux ahead of propagating flame 

Applying the model developed in equation 45 and 46 to the dataset of the propagating flame, 

convective heat flux can be calculated assuming 𝑞𝑞 = 𝑇𝑇∞𝑐𝑐𝑝𝑝𝑢𝑢′𝜌𝜌′������ . Where 𝑇𝑇∞  is ambient temperature 



and 𝑐𝑐𝑝𝑝 is specific heat of air. Figure 14 illustrates the convective heat flux derived from figure 11. 

When no wind was present, the convective heat transfer structures were closer to the flame itself. 

In the wind-driven fire, convection was ahead of the flame. Convective heat transfer increased as 

distance to the flame decreased. The calculated value shown in figure 14, demonstrates the 

convective preheating of the fuel bed. These values are based on various assumptions such as the 

convective profile is constant in line of sight axis (𝑧𝑧 axis in figure 1). Nevertheless, the presented 

methodology visualizes the convective heat transfer ahead of the fire and it can be used to 

understand the effect of wind on preheating of the fuel bed.  

 
Figure 14 Convective heat transfer around a fire propagating in a vegetative fuel bed. (a) 

without the presence of wind (b) when the external wind of 𝒖𝒖 = 𝟎𝟎.𝟒𝟒𝟒𝟒 𝒎𝒎/𝒔𝒔 is present 

In the previous section, the thermal plume and velocity vectors associated with the fire was 

visualized and calculated. Furthermore, our purposed methodology, which was introduced in 

section (1.5.3) was deployed to visualize and estimate convective heat transfer of hot gases around 

the flame using consecutive BOS images. It has been seen that wind forces the thermal plume 

a b 



ahead of the flame. The presence of convective eddies ahead of the flame enhances preheating of 

fuel. To quantitively understand the effect of wind on thermal convection in front of the flame, the 

convective heat flux profile was analyzed in three different distances from the flame. Moreover, 

in addition to the experimental sets presented in this section, a third case is also introduced, in 

which the wind speed is increased to 1 𝑚𝑚/𝑠𝑠  and the ambient temperature is reduced and kept at 

4.4 ℃. For this comparison, images with approximately the same flame geometry were compared. 

The selected frames along with the density gradient profile and convective heat flux profile can be 

seen in figure 15. The calculated values on these lines can be seen in figure 15.  

 
Figure 15 Comparison of thermal plume around the fire in different wind condition. Each 

column represents the wind condition. The first row is the raw frame of the image. the second 
row is the magnitude of the density vectors, and the third row is the measured convective 
heat flux. The vertical red line is approximately 3.375 cm, the green line is approximately 
13.5 cm, and the blue line is approximately 21.477 cm ahead of the flame.  



It can be seen from figures 15 and 16, for approximately the same flame geometry, the presence 

of wind increases convective heat flux. Moreover, higher the wind speed, more area the convective 

thermal plume ahead of flame covers. 



 
Figure 16 evaluation of convective heat flux on the red, green, and blue line in figure 15. 

It can be seen heat flux decreases farther away from the flame. Also, it can be seen, higher 
the wind speed higher the heat flux is ahead of the fire 

BOS is based on the fact that hot gases around the fire plume have different density compared to 

the surrounding fluid. These fluctuations cause changes in the refractive index, which is the reason 



for the background image to get distorted. When applying BOS to reacting flow, the changes in 

density is not solely caused by changes in temperature. The products of the combustion reaction 

are gases that have a different density than air. Therefore, since the exact compositions of gases 

are unknown, it was more relevant to analyze the density gradient and fluctuations rather than 

changes in temperature. In reactive flows, it is a good assumption that when comparing two 

consecutive frames of images, turbulent mass and heat transfer are equal. Development of equation 

45 is based on this assumption. 

1.5.4.D Flow Visualization and convection measurement for Live Vegetative Fuel Beds. 

As it was indicated in the previous sections, small nursery plants were interspersed across the fuel 

bed. The plants used in these experiments were from southern united states and from Lyonia, 

Vaccinium and Ilex species. The experiments were done with and without the presence of external 

wind. As the fire propagated through the fuel bed, the BOS system was able to capture density 

variations ahead of the flame front by comparing distorted and undistorted background images. 

Comparison two consecutive frames of images helped to understand convective behavior of the 

thermal plume. 

For the first set, inkberry (Ilex glabra) was distributed in the pine needle fuel bed. Figure 17 shows 

the result of BOS imagery of Inkberry. The red dotted region identifies the plant location. Since 

the plants are small, its foliage was buried under the pine needle fuel bed. The ambient temperature 

was 25℃ with a dew point of 6℃. The wind speed was kept at 0.44 𝑚𝑚/𝑠𝑠.  



 
Figure 17 Visualization of the thermal plume and convective plume around the fire. The 

live fuel is Inkberry (Ilex). The first row represents the cases without the presence of external 
wind, and the second row shows the case was 𝟎𝟎.𝟒𝟒𝟒𝟒 m/s wind was present. The red dotted line 
shows the plant location. 

In the second set, Darrow’s blueberry (Vaccinium darrowii Camp) was distributed in the pine 

needle fuel bed. In the no wind case, the ambient temperature was 27℃ with a dew point of 9℃. 

In the presence of external wind of 0.66 𝑚𝑚/𝑠𝑠 t,he ambient temperature was set to 4℃ with a dew 



point of -9℃. Compared to Inkberry, blueberry had taller foliage resulting in some branches to be 

higher than the pine needle fuel bed. Figure 18 shows the result of BOS imagery of blueberry. 

 
Figure 18 Visualization of the thermal plume and convective plume around the fire. The 

live fuel is Blueberry (Vaccinium). The first row represents the cases without the presence of 
external wind, and the second row shows the case was 𝟎𝟎.𝟖𝟖 m/s wind was present. The red 
dotted line shows the plant location. 

In the third set, Fetterbush (Lyonia lucida) was distributed in the pine needle fuel bed. In the no-

wind case, the ambient temperature was 27℃ with a dew point of 9℃. In the presence of external 



wind of 0.8 𝑚𝑚/𝑠𝑠 t,he ambient temperature was set to 4℃ with a dew point of -9℃. Compared to 

Inkberry, blueberry had taller foliage resulting in some branches to be higher than the pine needle 

fuel bed. Figure 19 shows the result of BOS imagery of Fetterbush. 

 
Figure 19 Visualization of the thermal plume and convective plume around the fire. The 

live fuel is Fetterbush (Lyonia). The first row represents the cases without the presence of 
external wind, and the second row shows the case was 𝟎𝟎.𝟖𝟖 m/s wind was present. The red 
dotted line shows the plant location. 



From figures 17-19, it can be seen that wind pushes the thermal plume ahead of the flame. This 

phenomenon can be seen, especially with higher wind speed and lower ambient temperature. When 

no external wind is present, small changes and variation in density gradient around the plant’s 

foliage can be seen. This phenomenon could result in processes such as preheating of the foliage 

and also release of pyrolysis products; both phenomena cause the density of the gases surrounding 

the live species to change. 

1.5.5 Summary of results for all experimental configuration 

In section 1.5.4, the process and results for understanding flow behavior for a single experiment 

was described. This procedure gave a good understanding of the flow behavior around the fire 

with and without the presence of external wind, and how potentially live shrubs would have 

affected the flow field. These findings were a great methodology for understanding the flow field. 

However, having around 11,600 images for each burn and around 1,125,200 total high-resolution 

images made it necessary to develop a data analysis paradigm. This process made it possible to 

develop a correlation between different experimental configurations, while it reduced the size of 

the dataset significantly. The first step for developing such model was to understand and describe 

the flow using fundamental transport equations of heat and momentum, doing so, the following 

Reynolds Averaged Navier-Stokes (RANS), and energy balance equation was used as the basis of 

the analysis 

𝑈𝑈𝚤𝚤� ,𝑡𝑡+ 𝑈𝑈�𝑗𝑗𝑈𝑈�𝑖𝑖 ,𝑗𝑗 = − 1
𝜌𝜌
𝑝𝑝,𝚤𝚤���+ 𝑓𝑓𝑖̅𝑖 + 𝜈𝜈𝑈𝑈�𝑖𝑖 ,𝑗𝑗𝑗𝑗− 𝑢𝑢𝚤𝚤𝑢𝑢𝚥𝚥�����,𝑗𝑗 =  − 1

𝜌𝜌
𝑝𝑝,𝚤𝚤���+ 𝑓𝑓𝑖̅𝑖 + (𝜈𝜈 + 𝐾𝐾𝜈𝜈)𝑈𝑈�𝑖𝑖 ,𝑗𝑗𝑗𝑗 (47) 

𝑇𝑇�,𝑡𝑡 + 𝑈𝑈�𝑗𝑗𝑇𝑇�,𝑗𝑗 = 𝛼𝛼𝑇𝑇�,𝑗𝑗𝑗𝑗 − 𝑇𝑇′𝑢𝑢𝚥𝚥�����,𝑗𝑗 = (𝛼𝛼+𝐾𝐾𝐻𝐻)𝑇𝑇�,𝑗𝑗𝑗𝑗  (48) 

In equation 47, 𝑈𝑈𝚤𝚤�  is the mean velocity of the flow, 𝜌𝜌 is the density of the fluid, 𝑝𝑝𝑖𝑖 is the pressure 

gradient associated with flow field,𝜈𝜈 is the kinematic viscosity of the fluid, 𝑢𝑢𝑖𝑖 is the fluctuating 



component of velocity and 𝐾𝐾𝑣𝑣 is eddy diffusivity of momentum. In equation (48) 𝑇𝑇� and 𝑇𝑇′ are the 

mean and fluctuating components of temperature of the flow field and 𝛼𝛼 is the thermal diffusivity 

and 𝐾𝐾𝐻𝐻 is eddy diffusivity of heat. 

 In fluid mechanics, the convective mode of transport of momentum, heat, and mass is described 

using eddy diffusivity. Therefore, to understand convective heat transfer in propagating fire in a 

vegetative fuel bed, eddy diffusivity was used to describe convective heat transfer. Since BOS 

dataset provided a measure of convective heat transfer as well, thus this dataset was used to obtain 

values on eddy diffusivity. Mathematically eddy diffusivity of heat is described as: 

𝐾𝐾𝐻𝐻 = 𝑇𝑇′𝑢𝑢𝚥𝚥������

𝑇𝑇� ,𝑗𝑗
  (49) 

In many cases is not trivial to measure fluctuating components nor the gradient terms. Moreover, 

knowing the values associated with eddy diffusivity, not only provides understanding of the 

convective mode of transport but also utilizes solving RANS equation numerically. Thus, various 

numerical methodologies exist for modeling eddy diffusivity. These methodologies are usually 

categorized based on the number of transport equations that are necessary to be solved in addition 

to the fundamental governing equations. For example, the commonly used 𝑘𝑘 − 𝜖𝜖 , 𝑘𝑘 − 𝜔𝜔 are two 

equation models because they solve Turbulent Kinetic Energy 𝑇𝑇𝑇𝑇𝑇𝑇 and dissipation or vorticity 

equation in additional to the governing transport equations. 

When working with an experimental dataset, like the BOS dataset, solving additional transport 

equations is not possible. However, a category of eddy diffusivity models known as zero-equations 

models exists that doesn’t solve any transport equation. These models instead provide an algebraic 

relation between the parameters that are correlated to eddy diffusivity. Looking back at the 

physical description of diffusion, one can describe eddy diffusivity as: 



𝐿𝐿 ∝ √𝐾𝐾 ∙ 𝑡𝑡  (50) 

Here 𝐿𝐿 is a length scale that the fluid parcel will be transported by eddy with diffusivity of 𝐾𝐾 in 

the time scale 𝑡𝑡. Equation 50 can be rewritten as  

𝐾𝐾 ∝ 𝐿𝐿2

𝑡𝑡
  (51) 

Prandtl used the same methodology and defined the characteristic length 𝐿𝐿 as mixing length 𝐿𝐿𝑚𝑚. 

The mixing length is defined as the distance the fluid parcel will be transported while it conserves 

its properties before it mixes with the surrounding fluid. Looking at the BOS results (Figure 11) 

this distance can be described as the horizontal width and vertical height of the thermal plume 

around the fire. In this study preheating of the surface fuels are important, thus in our analysis only 

the horizontal width was considered. Figure 20 shows a schematic of mixing length around a fire 

with and without presence of wind.   

 

Figure 20 Schematic of the definition for convective mixing length  

Looking back to equation (51), other than length scale 𝐿𝐿, eddy diffusivity is also dependent on a 

time scale 𝑡𝑡. To define this time scale, the vorticity which characterizes the rotation of eddies was 

𝑳𝑳𝒎𝒎 𝑳𝑳𝒎𝒎 



considered. These eddies facilitate the turbulent mixing thus a time scale corresponding to vorticity 

can help to characterize eddy diffusivity. The vorticity equation is obtain by taking curl of the 

Navier-Stokes equation : 

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= 𝜔𝜔𝑗𝑗𝑢𝑢𝑖𝑖 ,𝑗𝑗��� −
1

𝜔𝜔𝑖𝑖𝑢𝑢𝑗𝑗 ,𝑗𝑗
 ���

2 

− 𝜈𝜈𝜈𝜈𝑖𝑖 ,𝑗𝑗𝑗𝑗���
3

+ 1
𝜌𝜌2
𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝜌𝜌,𝑖𝑖𝑃𝑃,𝑘𝑘�������

4

  (52) 

Here 𝜔𝜔 is the vorticity vector. The first term represent vortex stretching, the second term is related 

to fluid expansion due to combustion, the third term is viscous diffusion of vorticity. The fourth 

term, is the baroclinic torque, which is quite important in turbulent combustion. Baroclinic 

vorticity arises when the density and pressure gradients are misaligned. In the flame, the pressure 

gradient is hydrostatic and the density gradient points horizontally outward, which causes the 

baroclinic term to be nonzero. Since the only term in the vorticity equation that is not a function 

of existing vorticity is the baroclinic term, it is theorized baroclinicity gives rise to the initial 

vorticity in the flame[68]. One can rewrite baroclinic term as: 

𝐵𝐵 = 𝜌𝜌,𝑖𝑖

𝜌𝜌
∙ 𝑔𝑔  (53) 

Looking back at equations (6) , BOS can be used to calculate the value for density gradient 𝜌𝜌,𝑖𝑖. 

The calculated value 𝐵𝐵 can be combined with 𝐿𝐿𝑚𝑚 to define eddy diffusivity as : 

𝐾𝐾 = 𝐿𝐿𝑚𝑚2 ∙ 𝐵𝐵0.5  (54) 

𝐾𝐾 = 𝐿𝐿𝑚𝑚2 ∙ ��𝑔𝑔 ∙ 𝜌𝜌,𝑖𝑖/𝜌𝜌�  (55) 

This model can be used to summarize the turbulent nature of the convective flow around the flame. 

Having this model, it was necessary to process all 1,125,200 images to create a new dataset, which 

the model could be deployed to. To create such database the values of the density gradient, 



convective heat flux and velocity magnitude was averaged over two regions of each individual 

image. The first region was the entire frame of image. This region, as will be described in the next 

section, was used to calculate the values for mixing length 𝐿𝐿𝑚𝑚. The second region was a 

neighborhood with dimensions of 100x100 pixels on the bottom right corner of image figure 21. 

The purpose of this region, as it is demonstrated as a white box in figure 21, was to capture the 

convective heat flux above the fuel bed. The values calculated using the second region provided 

understanding on the convective heat flux ahead of the flame which caused preheating of the 

unburnt fuel. 

 

Figure 21 Demonstration of region of interest when processing convection.  

1.5.5.A Calculation process of mixing length 𝑳𝑳𝒎𝒎 and time scale 𝒕𝒕 

In the previous section, a model was developed to help characterize turbulent behavior of 

convective thermal plume around the flame, thus eddy diffusivity was defined based on a mixing 

time scale and mixing length scale. Afterward, the BOS dataset was processed to average 



convective heat flux over the entire frame of an image. For simplicity the mean heat flux value is 

shown as < 𝐻𝐻 >. To define the convective mixing length a normalized value 𝑅𝑅𝐻𝐻 was defined as  

𝑅𝑅𝐻𝐻 = <𝐻𝐻>−<𝐻𝐻>𝑚𝑚𝑚𝑚𝑚𝑚 
<𝐻𝐻>𝑚𝑚𝑚𝑚𝑚𝑚−<𝐻𝐻>𝑚𝑚𝑚𝑚𝑚𝑚 

  (56) 

The subscript 𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑚𝑚𝑚𝑚𝑚𝑚 , demonstrates the maximum value of the corresponding signal. Later 

the  𝑅𝑅𝐻𝐻 signal was plotted against a fuel bed length scale 𝑋𝑋 = 𝐿𝐿 ∙ 𝑡𝑡/Δ𝑡𝑡. Here 𝑡𝑡 is the sampling time, 

and Δ𝑡𝑡 is the experiment duration, and 𝐿𝐿 is the length of the fuel bed. After plotting 𝑅𝑅𝐻𝐻, a normal 

distribution function defined in equation 57 was fitted to the dataset. 

𝐺𝐺 = 𝑒𝑒−0.5�𝑥𝑥−𝜇𝜇𝜎𝜎 �
2

 57 

Here 𝜇𝜇 is the mean of signal distribution and 𝜎𝜎 is the standard deviation. doing so, 𝐿𝐿𝑚𝑚 was defined 

as  

𝐿𝐿𝑚𝑚 = 3 ∙ 𝜎𝜎 58 

This value of 𝐿𝐿𝑚𝑚 corresponds to the distance from the maximum to the location where 𝑅𝑅𝐻𝐻 reaches 

0.003 of its initial value. Looking back to Prandtl’s definition of mixing length, this value 

corresponds to the length that the fluid is mixed with its surrounding. Figure 22 shows the plotted 

value 𝑅𝑅𝐻𝐻 and how 𝐿𝐿𝑚𝑚 was calculated.  



 

Figure 22 plot of 𝑹𝑹𝑯𝑯 vs Distance  

After calculating 𝐿𝐿𝑚𝑚 for each experiment, 𝑡𝑡 was calculated using the magnitude of the density 

gradient signal at the position of 𝐿𝐿𝑚𝑚. Doing so made it possible to calculate eddy diffusivity for 

each experimental setup. The summarized results for each phase of the experiments are 

demonstrated below in figures 23-25 



 

Figure 23 Convective mixing length and eddy diffusivity calculation for phase 1  



Figure 24 Convective mixing length and eddy diffusivity calculation for phase 2 



 

Figure 25 Convective mixing length and eddy Diffusitivity calculation for phase 3 

 



The result demonstrated in figures 23-25 elaborate the effect of the external wind as a key 

parameter affecting the mixing length, eddy diffusivity and thus convective heat transfer. In the 

first phase, there was a big variety of treatments and experimental configurations, however 

comparison of treatment 12 and 14 shows that when all the parameters were kept constant, the 

external wind increased the convective mixing length and thus eddy diffusivity. The results 

obtained using BOS in this phase did not demonstrate how adding live shrubs had affected the 

eddy diffusivity compared to cases with only pine needle fuel bed. The small shrub height, and the 

variability on other important parameters such as the number of plants and mass of pine needle 

fuel bed may have caused such outcome. However, generally the result of all three phases indicate 

that the presence of the plants affected the calculated eddy diffusivity.  

1.5.5.B Calculation of convective heat flux for all experimental configuration 

As it was explained in the previous section, a neighborhood of 100 x 100 pixels were selected to 

capture convective heat flux caused by the flame. Figure 26 shows a sample signal obtained by 

such process. The results for all the experiments were summarized by evaluating the maximum 

value and median value of the convective signal distribution. The results are shown in figure 27. 

The description for each treatment is shown in figures 23-25 and tables 3-5 



 

Figure 26 Convective heat flux for a single treatment  

 

Figure 27 Maximum and the median value of convective heat flux for all treatments 

The results are shown in figure 27 shows how the convective heat flux changed in different 

experimental configurations. It has to be noted, as it was also discussed in section 1.5.4, these 



values are an estimation of the amount of convective heat transfer caused by the fire in the direction 

that it propagates. As it has also been discussed various assumptions were made to estimate 

convective heat flux, and these assumptions may cause uncertainty in the results shown in figure 

27. One of the major assumptions was using 2D BOS to study a 3D phenomenon, consequently 

the images and data were a planar projection of a 3D phenomenon All the values obtained assumed 

that when a linear flame was present, all the properties did not change in the direction of line of 

sight. As flame front deviates from linear this assumption could cause uncertainty on the 

quantitative results. Thus, the computed values may not be exact.  However, this methodology still 

can provide a general understanding of the convective heat transfer for example, as demonstrated 

here, how it changes in different wind condition. 

 



1.6 Mass Loss Data Analysis 

In section 1.3.1 the importance of high-resolution mass loss measurement of a single plant was 

discussed. It had been discussed that a decent mass loss data could be combined with gas 

measurement data and correlate the pyrolysis gases to the mass lost in the pyrolysis process. The 

mass-loss rate can also help to understand heat transfer effects on the pyrolysis process. To create 

such signal a high precision scale was used. The main challenge in obtaining signal was that in 

many of the experiments, especially when no wind was present, the ashes from the burnt fuel 

would fall on to the mass loss test section and corrupt the signal obtained by the sensor. As it can 

be seen in figure 29 the total mass loss of a plant was less than 7 grams, thus the interference 

caused by the ashes made the data for specific burn useless. Other than these signal interferences, 

in some of the experimental setup the plant was elevated and therefore couldn’t be placed on the 

scale. Nevertheless, in some cases, the signal gathering was successful. These signals follow a 

similar trend as the signal shown in figure 28. The major differences are the initial mass of the 

plants and also mass loss rate, which is depended on heat transferred to the plant. Figure 28 shows 

a sample signal obtained by the mass loss measurement system among with the calculated mass 

loss rate from the signal 



 

Figure 28 sample mass loss signal  

In order to summarize the mass loss rate results, the initial mass of all the measured experiments, 

total mass loss, and the maximum mass loss rate of reliable signals was plotted in figure 29  

Figure 29 summary of mass loss data  



1.7 Schmidt Boelter and thermocouple system Data analysis  

In addition to the BOS system and high precision scale, a pair of Medtherm Schmidt Boelter 

sensors and a thermocouples system was installed in the wind tunnel. In the first two phases, the 

thermocouple was designed to mimic the temperature profiles around a plant. The temperature 

profiles and the maximum values did not change significantly between the experimental 

configurations. Figure 30 shows a sample result of the thermocouple signal in these phases. In the 

third phase, as mentioned in section 1.3.3 the thermocouples were dispersed in the wind tunnel to 

help to know the temperature when the pyrolysis gas was captured. Figure 31 shows the result for 

this configuration.  

 

Figure 30 Sample temperature profile for two first phases   



 

Figure 31 Sample temperature profile for third phase   

The Medtherm sensor was installed to capture total and radiant heat flux absorbed by the surface 

fuel as the fire propagated through the fuel bed. The sample results for output of these sensors can 

be seen in figure 32. When looking into the heat flux sensor data, it can be seen that the amount of 

radiation and total heat flux varies a lot. The reason for this difference relates back to the position 

of the sensors. The sensors were laid out so it can capture heat flux on the surface of the fuel bed, 

but commonly it would have been covered by the pine needle. As a result, the total heat flux 

measurement took into account conduction and also limited the view factor between the radiometer 

and the flame, which resulted in a small amount of radiation to be recorded. 



 

Figure 32 Sample signal of heat flux sensors  

1.8 Summary  

Recent findings elaborate on the importance of convective heat transfer in fire propagation in 

vegetative fuels. In this research, the effect of convective heat transfer mechanism on the pyrolysis 



process and fire propagation was studied. To quantify convection ahead of the flame, Background 

Oriented Schlieren (BOS) was used as a simple method of flow visualization around the fire. BOS 

made it possible to visualize the thermal plume associated with the fire as the flame propagated 

through the fuel bed. This enabled us to effortlessly see how in a wind-driven fire, the wind forces 

the thermal plume ahead of the flame while in the non-wind driven fire the thermal plume is 

attached to the flame itself. Next, we demonstrated that by applying Density Gradient Image 

Velocimetry (DGIV) to the result of BOS the flow associated with the thermal plume could be 

visualized as well. Finally, it was shown that comparing consecutive frame of images makes it 

possible to visualize and quantify convective heat transfer. 

After visualizing convective heat around a fire, a procedure was developed to model convective 

heat transfer ahead of the fire using the concept of eddy diffusivity. The eddy diffusivity was 

defined using an algebraic equation, which used turbulent mixing length and mixing time scale. 

The result of evaluating eddy diffusivity in different experimental configuration, demonstrated 

how the presence of external wind affected the mixing length and thus eddy diffusivity. To 

summarize external wind effects on eddy diffusivity, the eddy diffusivity was plotted against non-

dimensional Froud number defined as : 

𝐹𝐹𝑟𝑟2 = (𝑈𝑈𝑤𝑤−𝑅𝑅𝑅𝑅𝑅𝑅)2

𝑔𝑔.Δ𝐻𝐻𝑐𝑐𝐻𝐻∞
∙𝑊𝑊𝑓𝑓

 (59) 

This Froud number expression provides a measure of the ratio of the kinetic energy of the air over 

the sensible heat flux provided by the fire. Here, 𝑈𝑈𝑤𝑤 is the wind speed, 𝑅𝑅𝑅𝑅𝑅𝑅 is the rate of spread 

of the fire, 𝑔𝑔 is the gravity and 𝑊𝑊𝑓𝑓 is the width of flame. The convective buoyancy is expressed as 

Δ𝐻𝐻𝑐𝑐/𝐻𝐻∞, where Δ𝐻𝐻𝑐𝑐 is enthalpy of combustion and 𝐻𝐻∞ is the ambient enthalpy. Froud number 

shown in equation (59) is very similar to the Froud number defined by Clark et al [69]. In this 



study for calculating the heat of combustion, Δ𝐻𝐻𝑐𝑐 , the heat release of the long leaf pine needle was 

only considered. Figure 33 shows the plotted values of eddy diffusivity against their calculated 

Froud number  

 

Figure 33 Values of eddy diffusivity against calculated Froude number  

As it can be seen in figure 33, eddy diffusivity can be described as the function of Froud number 

as: 

𝐾𝐾𝐻𝐻 = 35 ∙ (10 ∙ 𝐹𝐹𝐹𝐹)3 + 0.6 60 

The same procedure can be taken to evaluate the effect defined Froude number on the value of 

convective heat flux measured ahead of the flame using BOS. Figure 34 shows the result of such 

process. 



 

Figure 34 Values of convective heat transfer against calculated Froude number  

Similarly, an expression can be defined which correlated the convective heat flux obtained in these 

experiments to the Froud number  

𝐻𝐻𝑐𝑐 = 0.35 ∙ 𝐹𝐹𝑟𝑟0.5 + 0.1  (61) 

In calculating convective heat flux, it was assumed when a linear flame is present, all the properties 

do not change in the direction of line of sight, As flame front deviates from linear this assumption 

could cause uncertainty on the quantitative results. Thus, the computed values may not be exact. 

However, when looking at the order of magnitude of measured values it is comparable to some 

numerical models such as the one done by Porterie et al , [70]. Nevertheless, this methodology still 

can provide a general understanding of the convective heat transfer for example, as demonstrated 

here, how it changes in different wind condition. 



2 Numerical Modeling of Fire Spread Across Pine Needles Fuel Beds 

2.1 Introduction 

Wildland fires are a big threat to human life and the local ecosystem. In 2018, more than 58,000 

fires occurred in the US and those fires burned over 8,000,000 acres [71]. One of the plants that 

are mostly prone to fire is dead plant which is wildly distributed in the forest. Due to the low 

moisture content (generally 0-40%), the characteristics of easy accumulation of heat and the 

concentrated distribution, the dead fuel has an extremely high probability of fire and will bound to 

spread once a fire occurs. Hence, better understanding of the fire spread characteristics of such 

fuels are essential to control large scale wildland fires. 

The propagation of fire is a complex phenomenon involving ignition, pyrolysis, combustion and 

spread. Each process is also affected by many factors: thermal properties of the ignited materials, 

heat transfer and external environment conditions [72]. The external environment is considered as 

the most important aspect that affects the fire size and spread rate. It mainly includes terrain slope 

and wind conditions. Basically, the air flow caused by the wind environment can provide enough 

oxygen during combustion. It can also increase the heat transfer to the unburned fuel area by 

reducing the angle between the flame and unburned fuel bed. Therefore, the wind speed will 

inevitably accelerate the fire spread. 

In order to better understand the fire spread phenomenon, many fire spread models were 

established. Wildland fire spread models are mainly divided into three categories: statistical 

models, semi-empirical models and physical models. In contrast to the statistical models and semi-

empirical models, physical models pay more attention to the mechanism of chemical process and 

heat transfer [73]. The solid-phase pyrolysis and the gas-phase combustion are introduced in 

chemical mechanisms, and the kinetic parameters are used to support each reaction.  The heat 



transfer process involves radiation, conduction and convection. Most of the thermal degradation 

models of wildland fire is based on a simplified reaction mechanism. The first step is to turn the 

relative wet plants into dry plants, which can be described as water evaporation. The second step 

is a single-step reaction, which mainly pyrolyzes dry plants into char and fuel gases. Both of the 

above two step reactions are endothermic process. The third reaction is gas combustion reaction. 

The real plants contain many compositions, and each of them has various physical properties. 

Therefore, more complex physical models are needed to improve the reliability of the results.  

This study utilizes a series of Computational Fluid Dynamics simulations to study the fire spread 

across pine needles fuel beds. Three different wind conditions including U=0, 0.44, and 1 m/s are 

investigated. Two modeling schemes, single-step reaction and multi-step reaction are utilized to 

model the pyrolysis process. In the single-step reaction, the pine needles fuel is considered as 

cellulose, while for the multi-step reaction the pine needles fuel is modeled as a combination of 

cellulose, hemicellulose and lignin.  To validate the numerical methodology, the temperature and 

flame spread rate date are compared with the wind tunnel measurements. Different quantities such 

as temperature at fuel bed surface, flame shape, flame spread rate, flame width and fuel mass loss 

rate are analyzed in this study.  

2.2 Experimental setup 

The experiments were conducted in a wind tunnel located at the U.S. Forest Service PSW Research 

Station in Riverside, CA. Figure 35 shows a schematic of the experimental setup. The length, width 

and height of wind tunnel is 4.0 m, 1.2 m and 1.0 m, respectively. For ease of observation, two 

transparent glasses are installed on the both side of the tunnel. A fan located on the left side of the 

tunnel is used to create a wind environment, and a rectifying section is arranged at the beginning 

of the tunnel to obtain uniform wind profile in the cross-section. The bottom of the tunnel is made 



of gypsum. The ambient temperature and humidity were maintained at 24 ℃ and 24%, 

respectively. The experiments repeated for three different wind conditions. Table 1. lists the details 

of each experiment. For each experiment, the total mass of the pine needles is 1 kg and the fuel 

moisture content is 10%. The fuel size is 2.8 m length, 0.9 m width and 0.06 m height. Several 

thermocouples are arranged at the surface of the fuel bed to collect the flame temperature. 

 
Figure 35. A schematic of wind tunnel with fuel bed dimensions 

 
 

Table 6. Different experimental scenarios 

Case no. Total mass (kg) 
Fuel Moisture 
Content 
(%) 

Wind speed 
(m/s) 

1 1 10 0 
2 1 10 0.44 
3 1 10 1 

 



2.3 Numerical model 

2.3.1 Gas-phase equations 

Large eddy simulation (LES) technique is utilized to study pyrolysis and combustion of pine 

needles fuel bed. The LES equations are derived by implementing a low-pass filter, parameterized 

by a width of ∆, to the mass, momentum, energy and species equations. The Favre-filtered 

governing equations are presented as follows [74]: 

𝜕𝜕𝜌̄𝜌
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 ⋅ (𝜌̄𝜌𝑢𝑢�) = 0  (62) 

𝜕𝜕𝜌̄𝜌𝑢𝑢�
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 ⋅ (𝜌̄𝜌𝑢𝑢�𝑢𝑢�) = −𝛻𝛻𝑝̄𝑝 − 𝛻𝛻 ⋅ (𝜏̄𝜏 + 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠) + 𝜌̄𝜌𝑔𝑔  (63) 

𝜕𝜕𝜌𝜌�ℎ�

𝜕𝜕𝜕𝜕
+ ∇. �𝜌̅𝜌ℎ�𝑢𝑢�� = 𝐷𝐷𝑃𝑃�

𝐷𝐷𝐷𝐷
+ 𝑞𝑞′′′ + 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 − ∇. (𝑞𝑞�𝑐𝑐 + 𝑞𝑞�𝑑𝑑 + 𝑞𝑞�𝑟𝑟)  (64) 

𝜕𝜕𝜌̄𝜌𝑍𝑍�𝛼𝛼
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 ⋅ (𝜌̄𝜌𝑢𝑢�𝑍𝑍�𝛼𝛼) = −𝛻𝛻 ⋅ (𝚥𝚥𝛼̄𝛼 + 𝐽𝐽𝛼𝛼
𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑚̄𝑚𝛼𝛼

′′′  (65) 

where 𝜌̄𝜌 is the filtered density, 𝑢𝑢�  is the Favre-filtered velocity vector, 𝑧̃𝑧𝛼𝛼 is the mass fraction of 

lumped species 𝛼𝛼, 𝚥𝚥𝛼̄𝛼 and 𝐽𝐽𝛼𝛼
𝑠𝑠𝑠𝑠𝑠𝑠 denote the molecular species diffusion flux and subgrid-scale (SGS) 

species diffusion flux, respectively, 𝑚̄𝑚𝛼𝛼
′′′ is the mean chemical source term, 𝑝̄𝑝 is the background 

pressure, 𝜏̄𝜏 and 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠 represent viscous and SGS stress tensors, ℎ� is the sensible enthalpy, ∆ is the 

filter width, 𝑃̄𝑃 is the filtered pressure, 𝑞𝑞′′′ is the heat release rate per unit volume form chemical 

reaction, 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 is the energy transferred to subgrid-scale, 𝑞̄𝑞𝑐𝑐, 𝑞̄𝑞𝑑𝑑 and 𝑞̄𝑞𝑟𝑟 represent the conductive, 

diffusive and radiative heat flux. 

Turbulence model was mainly described based on the two turbulent transport coefficients: the 

turbulent viscosity and the turbulent diffusivity. Schmidt number and Prandtl number were used 

to identify the turbulent diffusivity, and both of them are given a value of 0.5 [75]. In this study, 

the eddy viscosity was calculated based on the Deardorff’s model [76, 77]: 



𝑣𝑣𝑡𝑡 = 𝐶𝐶𝑣𝑣𝛥𝛥(𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠)1/2  (66) 

𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠 = 1
2

((𝑢̄𝑢 − 𝑢̄𝑢�)2 + (𝑣̄𝑣 − 𝑣̄𝑣�)2 + (𝑤̄𝑤 − 𝑤̄𝑤�)2)  (67) 

Where 𝑣𝑣𝑡𝑡  is the turbulent viscosity, 𝐶𝐶𝑣𝑣 is a constant, 0.1, 𝑢̄𝑢 represent the average value at the grid 

cell center, 𝑢̄𝑢�  is the weighted average over the adjacent cells. 

All the formulation relating different flux (heat, species, momentum) and source terms are 
presented as follows: 

(𝐽𝐽𝛼𝛼 + 𝐽𝐽𝛼𝛼
𝑠𝑠𝑠𝑠𝑠𝑠) = −𝜌̄𝜌(𝐷𝐷�𝛼𝛼 + 𝜈𝜈𝑡𝑡

𝑆𝑆𝑐𝑐𝑡𝑡
)𝛻𝛻𝑍𝑍�𝛼𝛼  (68) 

𝜏̄𝜏 = −2𝑢𝑢�(𝜋𝜋
∆

(𝑘𝑘
� 𝑠𝑠𝑠𝑠𝑠𝑠
2

)1/2 − 1
3

(𝛻𝛻 ⋅ 𝑢𝑢�) 𝐼𝐼)  (69) 

𝜏̄𝜏𝑠𝑠𝑠𝑠𝑠𝑠,𝑑𝑑 = −2𝜌̄𝜌𝑣𝑣�𝑡𝑡(
𝜋𝜋
∆

(𝑘𝑘
� 𝑠𝑠𝑠𝑠𝑠𝑠
2

)1/2 − 1
3

(𝛻𝛻 ⋅ 𝑢𝑢�) 𝐼𝐼)  (70) 

𝑚̄𝑚𝐹𝐹
′′′ = −𝜌̄𝜌 𝑚𝑚𝑚𝑚𝑚𝑚(𝑍𝑍�𝐹𝐹,𝑍𝑍�𝐴𝐴/ 𝑠𝑠)

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚
  (71) 

𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 = −𝜌̄𝜌𝑐̄𝑐𝑝𝑝
𝜈𝜈𝑡𝑡
𝑃𝑃𝑃𝑃𝑡𝑡
𝛻𝛻𝑇𝑇�   (72) 

𝑞̄𝑞𝑑𝑑 = −∑ 𝜌̄𝜌𝐷𝐷𝛼𝛼ℎ�𝛼𝛼𝛼𝛼 𝛻𝛻𝑍𝑍�𝛼𝛼  (73) 

 
Where 𝐷𝐷𝛼𝛼 is the diffusivity of species 𝛼𝛼, 𝑆𝑆𝑐𝑐𝑡𝑡 is the turbulent Schmidt number, 𝑃𝑃𝑃𝑃𝑡𝑡 is the Prandtl 

number, 𝑍𝑍�𝐹𝐹 and 𝑍𝑍�𝐴𝐴 represent mass fraction of fuel gas and air, respectively, 𝑠𝑠 is the mass 

stoichiometric coefficient for air, 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 is a time scale for mixing. 

2.3.2 Heat transfer 

The heat release rate per unit volume is defined by the gas fuel mass production rates multiplies 

by the respective heat of formation: 



𝑞𝑞′′′ = −∑ 𝑚̇𝑚′′′𝛥𝛥ℎ𝑓𝑓,𝛼𝛼𝛼𝛼   (74) 

Where 𝑞𝑞′′′ is the heat release rate per unit volume and 𝛥𝛥ℎ𝑓𝑓,𝑎𝑎 is the heat of combustion.  

Due to the neglecting the heat transfer through conduction, the heat transfer process that supports 

fire spread mainly includes radiation and convection. The net contribution from thermal radiation 

is defined by: 

𝑞̄𝑞𝑟𝑟 = 𝜅𝜅(𝑥𝑥) [𝑈𝑈( 𝑥𝑥) − 4𝜋𝜋𝐼𝐼𝑏𝑏(𝑥𝑥)]  (75-a) 

𝑈𝑈( 𝑥𝑥) = ∫ 𝐼𝐼(𝑥𝑥, 𝑠𝑠′)4𝜋𝜋 𝑑𝑑𝑠𝑠′  (75-b) 

𝑠𝑠 ⋅ 𝛻𝛻𝐼𝐼(𝑥𝑥, 𝑠𝑠) = 𝜅𝜅(𝑥𝑥) [𝐼𝐼𝑏𝑏( 𝑥𝑥) − 𝐼𝐼(𝑥𝑥, 𝑠𝑠)]  (76-a) 

𝐼𝐼𝑏𝑏 =𝜎𝜎𝑇𝑇4/𝜋𝜋  (76-b) 

Where 𝜅𝜅(𝑥𝑥) is the absorption coefficient, 𝐼𝐼𝑏𝑏(𝑥𝑥) is the source term, and 𝐼𝐼(x,s) is the solution of the 

radiation transport equation for a non-scattering gray gas. 

In the LES calculations, the convective heat transfer coefficient, ℎ, is based on the combination of 

natural and forced convective heat transfers. More details information can be found in [75]. 

2.3.3 Solid-phase equation 

Each solid material of fuel undergoes multiple pyrolysis reactions before it burns. In this process, 

many intermediate products will be formed to support the next reaction. For a given reaction (dry 

pyrolysis and oxidation), the reaction rate is defined by Arrhenius rate equation: 

𝑑𝑑𝑌𝑌𝑠𝑠,𝑖𝑖

𝑑𝑑𝑑𝑑
= −∑ 𝑟𝑟𝑖𝑖𝑖𝑖

𝑁𝑁𝑟𝑟,𝑖𝑖
𝑗𝑗=1 + ∑ ∑ 𝜈𝜈𝑠𝑠,𝑖𝑖′𝑗𝑗

𝑁𝑁𝑟𝑟,𝑖𝑖′

𝑗𝑗=1
𝑁𝑁𝑚𝑚
𝑖𝑖′=1 𝑟𝑟𝑖𝑖′𝑗𝑗        (𝑖𝑖′ ≠ 𝑖𝑖)  (77) 

𝑟𝑟𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑌𝑌𝑠𝑠,𝑖𝑖
𝑛𝑛𝑠𝑠,𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝐸𝐸𝑖𝑖𝑖𝑖

𝑅𝑅𝑇𝑇𝑠𝑠
)𝑋𝑋𝑂𝑂2

𝑛𝑛𝑂𝑂2 ,𝑖𝑖𝑖𝑖       Y𝑠𝑠,𝑖𝑖 = � 𝜌𝜌𝑠𝑠,𝑖𝑖

𝜌𝜌𝑠𝑠(0)
�  (78) 



where 𝑟𝑟𝑖𝑖𝑖𝑖 is the rate of reaction at the temperature 𝑇𝑇𝑠𝑠 for 𝑖𝑖𝑡𝑡ℎ material undergoing its 𝑗𝑗𝑡𝑡ℎ reaction, 

the second term on the right side of the equation denotes the contribution of the other materials 

producing the 𝑖𝑖𝑡𝑡ℎ materials as a residue with a yield of  𝜈𝜈𝑠𝑠,𝑖𝑖 ′𝑗𝑗. In this study, only the product of tar 

and gases were related to this term. 𝜌𝜌𝑠𝑠,𝑖𝑖 is the density of 𝑖𝑖𝑡𝑡ℎ material component, and  𝜌𝜌𝑠𝑠(0) 

represents the initial density. 𝑛𝑛𝑠𝑠,𝑖𝑖𝑖𝑖 is the reaction order, 𝐴𝐴𝑖𝑖𝑖𝑖 is the pre-exponential factor, s-1 and  

𝐸𝐸𝑖𝑖𝑖𝑖 is the activation energy, kj/mol.  

 

2.3.4 Single-step reaction 

The single-step reaction mechanism mainly contains two reactions: vaporization reaction and one 

pyrolysis reaction.  The purpose of physical vaporization is to turn wet pine needles into dry pine 

needles which is an endothermic process. In order to simplify the model and achieve a single-step 

reaction, the pine needle was assumed to be made of cellulose and all the pyrolysis gases were 

derived from the following single reaction.  

𝑊𝑊𝑊𝑊𝑊𝑊 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 →  𝐷𝐷𝐷𝐷𝐷𝐷 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛       (79) 

𝐷𝐷𝐷𝐷𝐷𝐷 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 → 𝜒𝜒 𝐶𝐶ℎ𝑎𝑎𝑎𝑎 +  (1 − 𝜒𝜒) 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  (80) 

For the gas combustion reaction, previous studies noted that the pyrolysis gases produced by plant 

contain carbon dioxide, carbon monoxide, hydrogen and methane. Shotorban et al. [78] showed 

that most of the pyrolysis gases produced by cellulose, hemicellulose and lignin was methane. 

Accordingly, the simplified chemical reaction is adopted in this research, and the stoichiometric 

relation is presented as follow: 

CH4+2(𝑂𝑂2+3.76N2) → CO2+2H2O+7.52N2  (81) 



Thermal properties of solid fuel, moisture and char is given in Table 3. In order to simplify the 

model, the thermophysical properties of the initial pine needles and intermediate product are 

assumed to be identical. In Table 3., apparent density means bulk density. 

Table 7.  The thermophysical properties of solid fuel constituents [79, 80]. 

Species Apparent density 
(kg/m3) 

Density 
(kg/m3) 

Thermal conductivity 
(W/mK) 

Specific heat 
(kJ/kgK) 

Moisture - 1000 0.596 3.9 

Dry fuel 650 2167 0.1256 2.3 

Char 350 2333 0.0837 1.1 

2.3.5 Multi-step reaction mechanism 

In order to improve the numerical model, a multi-step reaction is implemented to model the 

pyrolysis process. The pine needles considered as moisture, cellulose, hemicellulose and lignin. 

The mass fraction of cellulose, hemicellulose and lignin in the dry fuel assumed to be 33%, 33% 

and 34%, respectively. The reaction scheme shown in figure 36 is utilized for each of the fuel 

components. The reaction scheme contains five reaction steps, and each solid material undergoes 

those reactions. Reactions R1-R3 are primary step and R4 is a secondary step. Similar to single-

step reaction, the moisture reaction is also introduced in the mechanism.  

 
Figure 36. The reaction scheme of biomass [78, 81]. 



The thermophysical properties of each solid fuel (dry pine needles) and solid product (active and 

virgin cellulose, hemicellulose and lignin) of each step reaction are assumed identical, as shown 

in Table 3. The kinetic parameters of each reaction are given in Table 5. 

Table 8. The kinetic parameters of each materials [79]. 

Reaction A (s
-1

) E (kJ/mol) 

R1-cellulose 2.8×10
19

 242.4 

R2-cellulose 3.28×10
14

 196.5 

R3-cellulose 1.3×10
10

 150.5 

R1-hemicellulose 2.1×10
16

 186.7 

R2-hemicellulose 8.75×10
15

 202.4 

R3-hemicellulose 2.6×10
11

 145.7 

R1-lignin 9.6×10
8
 107.6 

R2-lignin 1.5×10
9
 143.8 

R3-lignin 7.7×10
6
 111.4 

R4 4.28×10
6
 108 

R5 5.13×10
10

 88 

2.4 Results and discussion 

Figure 37(a) shows the contour of temperature for a vertical plane at center of wind tunnel for 

different time steps including 20 s, 85 s and 135 s. These results are for no wind condition and 

single-step reaction modeling. The maximum temperature exceeds 900 ℃. According to the 

temperature variations, the flame height is around 50 cm. The vertical variation of velocity at the 

middle plane is shown in Figure 37(b). The results show that vertical component of velocity 

exceeds 3 m/s in some regions of flame. 



 
Figure 37. Contour of different flow quantities at a vertical plane at center of wind tunnel 

for different time steps 20, 85 and 135 s. a): Temperature b): Velocity 

 
Figure 38 shows the variation of temperature versus normalized time for experiment, single-step 

reaction, and multi-step reaction modeling. The temperature was reported for a point at the fuel 



bed surface at the center line. Three features can be extracted from the temperature graph: 

temperature rise trend, maximum temperature and peak temperature duration. The moments that 

the temperature rise and drop occur, denotes the flame front and backline, respectively. The 

temperature development trend for the single-step simulation was almost similar to the experiment 

for no wind condition and low wind condition, but the model overpredicted maximum temperature 

for high wind speed condition. The larger width of the peak for the single reaction compared to 

the experiment indicates that the flame width of the simulation is larger than the experiment.  

In the case of single-step reaction modeling, the peak temperatures for no wind, 0.44 m/s and 1.0 

m/s wind speeds are approximately 760 ℃, 680 ℃ and 740 ℃, respectively. Also, the relative 

temperature error between model prediction and experimental data were 17.6%, 16.6% and 45% 

for no wind, 0.44 m/s and 1.0 m/s wind speeds conditions, respectively. The multi-step reaction 

modeling improved the maximum temperature prediction compared to single-step reaction. The 

width of the peak curve is more similar to the experimental measurements. The peak temperature 

for no wind, 0.44 m/s and 1.0 m/s cases are 665 ℃, 552 ℃ and 658 ℃, respectively. The relative 

temperature error between model prediction and experimental data are 2.8%, 4.8% and 29%.  

Compared to the single-step model, the results of multi-step model indicated that the multi-step 

reaction model is more capable of predicting the temperature profile. However, the multi-step 

reaction model was incapable to predict the temperature profile for high wind speeds. 

 



 
Figure 38. Temperature at the fuel bed surface for a point at the center of wind tunnel 

for experiment, single-step reaction and multi-step reaction modeling versus normalized 
time at different wind speeds 

Figure 39 shows the contour of temperature at a vertical plane at middle of wind tunnel for different 

wind conditions and different modeling schemes. According to the contours, increase in incoming 

wind speed makes the flame larger and reduces the angle between flame and unburned fuel. 

Comparing the results of single-step reaction and multi-step reaction shows that the size of flame 

is bigger for single-step reaction modeling. From this result we can conclude that fire spread rate 

and maximum flame temperature is higher for single-step reaction modeling. 



 
Figure 39. Contour of temperature at vertical plane at middle of wind tunnel for single-

step reaction and multi-step reaction modeling. a): U=0 m/s. b): U=0.44 m/s. c): U=1 m/s. 

The flame propagation shape is shown in figure 40 for experiment, single-step reaction and multi-

step reaction at different wind speeds. According to the experiment, the flame shape and 

dimensions are greatly influenced by wind conditions. For no wind condition, the fire starts as a 

straight-line shape and changes to “U” shape. For 0.44 m/s wind condition, the fire represents a 

reverse “U” shape. For 1.0 m/s wind condition, the “U” shape fire still can be observed in a whole 

view. As figure 40 shows, both simulations were capable to replicate the fire shape for no wind 

and 0.44 m/s cases. But the flame curve is different between experiment and simulation at higher 

wind speeds.  

 



 
Figure 40. Flame dimensions from top view for experiment and simulation at different 

wind speed conditions. 

 

Figure 41 compares the flame width between single-step reaction modeling and multi-step reaction 

modeling. The flame width for single-step reaction is larger compared to the multi-step reaction. 

For single-step reaction the flame width varies around 15 cm, while the flame width is around 10 

cm for multi-step reaction. 



 
Figure 41. Flame width for single-step reaction and multi-step reaction at no wind 

condition. 

Figure 42 shows the mass loss of pine needles at different wind speed conditions for both single-

step and multi-step reactions. The pine needles had higher mass loss rate at higher wind speeds. 

Besides, the stable mass loss rate for the no wind condition, indicates that the combustion process 

was constant and even at no speed condition. But the mass loss rate has certain fluctuations that 

implies the flame changes dramatically at high wind speeds. In the case of multi-step reaction, the 

burning time is 550 s, 295 s and 130 s for 0 m/s, 0.44 m/s and 1.0 m/s, respectively. Figure 42 

predicted higher residue for no wind conditions. It can be interpreted that combustion was 

incomplete for no wind conditions. 



 
Figure 42. The mass loss with time for different wind speeds a): single-step reaction. b): 

multi-step reaction. 

 
Table 4 shows the fire spread rate for experiment and different simulations. This fire spread rate 

was calculated based on the fuel mass loss rate and the flame front location. In the case of single-

step reaction, since some endothermic reactions are neglected, the predicted fire spread rate is 

much faster compared to the experiment. The discrepancy between single-step reaction modeling 

and measurements is 48.9%, 60.7% and 68.7% for 0 m/s, 0.44 m/s and 1.0 m/s, respectively. 

Table 9. Experimental and simulation data for fire spread rate. 

Case no. 
Wind velocity 

(m/s) 

Experimental spread 

rate (cm/s) 

Fire spread rate of 

single-step model (cm/s) 

Fire spread rate of single-

step model (cm/s) 

1 0 0.58 0.86 (+48.9%) 0.51 (-12.1%) 

2 0.44 1.037 1.67 (+60.7%) 0.95(-8.4%) 

3 1.0 2.08 3.51(+68.7%) 2.13(2.4%) 

 



In the case of multi-step reaction modeling, there were 12.1%, 8.4% and 2.4 % deviation between 

measurement and modeling for 0 m/s, 0.44 m/s and 1.0 m/s, respectively. This improvement in 

results indicates the capability of multi-step reaction model in fire spread prediction.  

2.5  Conclusion 

A series of Computational Fluid Dynamics simulations to study the fire spread across a pine needle 

fuel bed. Three different wind conditions including U=0, 0.44, and 1 m/s were investigated. Two 

modeling schemes, single-step reaction and multi-step reaction were utilized to model the 

pyrolysis process. In the single-step reaction, the pine needles were considered as cellulose, while 

for the multi-step reaction the pine needles were modeled as a combination of cellulose, 

hemicellulose and lignin.  To validate the numerical methodology, the numerical temperature and 

flame spread rate date were compared with wind tunnel measurements. Different quantities such 

as temperature at fuel bed surface, flame shape, flame spread rate, flame width and fuel mass loss 

were analyzed in this study. Single-step reaction model overpredicted the flame spread rate, while 

the multi-step reaction model could predict flame spread rate. The flame was predicted 50% wider 

in the single-step reaction model compared to the multi-step reaction.  
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